1b=l1cosθ1,=l1θ˙1=l1θ˙1[−sinθ1cosθ1],y1be^1b,θ1=l1sinθ1,=l1[−sinθ1cosθ1],x˙1be^1b,θ2=−l1θ˙1sinθ1,=e^1b,θ3y˙1b=0=l1θ˙1cosθ1 x1r∴v1rv1r=2l1cosθ1,=2l1θ˙1=2l1θ˙1[−sinθ1cosθ1],y1re^1r,θ1=2l1sinθ1,=2l1[−sinθ1cosθ1],x˙1re^1r,θ2=−2l1θ˙1cosθ1,=e^1r,θ3y˙1r=0=2l1θ˙1cosθ1 Defining Δij=θi−θj, we get
x2b∴v2bv2b=l1cosθ1+l2cosθ2,=l12θ˙12+2l1l2θ˙1θ˙2cosΔ21+l22θ˙22=[−l1θ1˙sinθ1−l2θ2˙sinθ2l1θ1˙cosθ1+l2θ2˙cosθ2],e^2b,θ1y2b=l1[−sinθ1cosθ1],=l1sinθ1+l2sinθ2e^2b,θ2x˙2b=l2[−sinθ2cosθ2],=−l1θ1˙sinθ1−l2θ2˙sinθ2,e^2b,θ3y˙2b=0=l1θ1˙cosθ1+l2θ2˙cosθ2 x2r∴v2rv2r=l1cosθ1+2l2cosθ2,=l12θ˙12+l1l2θ˙1θ˙2cosΔ21+4l22θ˙22=⎣⎢⎢⎡−l1θ1˙sinθ1−2l2θ2˙sinθ2l1θ1˙cosθ1+2l2θ2˙cosθ2⎦⎥⎥⎤,e^2r,θ1y2r=l1[−sinθ1cosθ1],=l1sinθ1+2l2sinθ2e^2r,θ2x˙2r=2l2[−sinθ2cosθ2],=−l1θ1˙sinθ1−2l2θ2˙sinθ2,e^2r,θ3y˙2r=0=l1θ1˙cosθ1+2l2θ2˙cosθ2 x3b∴v3bv3b=l1cosθ1+l2cosθ2+l3cosθ3,=l12θ˙12+2l1l2θ˙1θ˙2cosΔ21+l22θ˙22+2l2l3θ˙2θ˙3cosΔ32+2l1l3θ˙1θ˙3cosΔ31+l32θ˙32=[−l1θ1˙sinθ1−l2θ2˙sinθ2−l3θ3˙sinθ3l1θ1˙cosθ1+l2θ2˙cosθ2+l3θ3˙cosθ3],e^3b,θ1y3b=l1[−sinθ1cosθ1],=l1sinθ1+l2sinθ2+l3sinθ3e^3b,θ2x˙3b=l2[−sinθ2cosθ2],=−l1θ1˙sinθ1−l2θ˙2sinθ2−l3θ3˙sinθ3,e^3b,θ3y˙3b=l3[−sinθ3cosθ3]=l1θ1˙cosθ1+l2θ˙2cosθ2+l3θ3˙cosθ3 x3r∴v3rv3r=l1cosθ1+l2cosθ2+2l3cosθ3,=l12θ˙12+2l1l2θ˙1θ˙2cosΔ21+l22θ˙22+l1l3θ˙1θ˙3cosΔ31+l2l3θ˙2θ˙3cosΔ32+4l32θ˙32=⎣⎢⎢⎡−l1θ1˙sinθ1−2l2θ2˙sinθ2−2l3θ3˙sinθ3l1θ1˙cosθ1+2l2θ2˙cosθ2+2l3θ3˙cosθ3⎦⎥⎥⎤,e^3r,θ1y3r=l1[−sinθ1cosθ1],=l1sinθ1+l2sinθ2+2l3sinθ3e^3r,θ2x˙3r=l2[−sinθ2cosθ2],=−l1θ1˙sinθ1−l2θ˙2sinθ2−2l3θ3˙sinθ3,e^3r,θ3y˙3r=2l3[−sinθ3cosθ3]=l1θ1˙cosθ1+l2θ˙2cosθ2+2l3θ3˙cosθ3 T=2m1bv1b2+2m1rv1r2+2m1rIcm,1rω1r2+2m2bv2b2+2m2rv2r2+2m2rIcm,2rω2r2+2m3bv3b2+2m3rv3r2+2m3rIcm,3rω3r2=2m1bl12θ˙12+8m1rl12θ˙12+24m1rl12θ˙12+2m2b(l12θ˙12+2l1l2θ˙1θ˙2cosΔ21+l22θ˙22)+2m2r(l12θ˙12+l1l2θ˙1θ˙2cosΔ21+4l22θ˙22)+24m2rl22θ˙22+2m3b(l12θ˙12+2l1l2θ˙1θ˙2cosΔ21+l22θ˙22+2l2l3θ˙2θ˙3cosΔ32+2l1l3θ˙1θ˙3cosΔ31+l32θ˙32)+2m3r(l12θ˙12+2l1l2θ˙1θ˙2cosΔ21+l22θ˙22+l1l3θ˙1θ˙3cosΔ31+l2l3θ˙2θ˙3cosΔ32+4l32θ˙32)+24m3rl32θ˙32=21(m1b+3m1r+m2b+m2r+m3b+m3r)l12θ˙12+21(m2b+3m2r+m3b+m3r)l22θ˙22+21(m3b+3m3r)l32θ˙32+(m2b+2m2r+m3b+m3r)l1l2θ˙1θ˙2cosΔ21+(m3b+2m3r)l3(l2θ˙2θ˙3cosΔ32+l1θ˙1θ˙3cosΔ31) Defining M1=m1b+3m1r+m2b+m2r+m3b+m3r, M2=m2b+3m2r+m3b+m3r, M3=m3b+3m3r, μ1=m1b+2m1r+m2b+m2r+m3b+m3r, μ2=m2b+2m2r+m3b+m3r and μ3=m3b+2m3r.
T=2M1l12θ˙12+2M2l22θ˙22+2M3l32θ˙32+μ2l1l2θ˙1θ˙2cosΔ21+μ3l3θ˙3(l2θ˙2cosΔ32+l1θ˙1cosΔ31). V=m1bgy1b+m1rgy1r+m2bgy2b+m2rgy2r+m3bgy3b+m3rgy3r=m1bgl1sinθ1+2m1rgl1sinθ1+m2bg(l1sinθ1+l2sinθ2)+m2rg(l1sinθ1+2l2sinθ2)+m3bg(l1sinθ1+l2sinθ2+l3sinθ3)+m3rg(l1sinθ1+l2sinθ2+2l3sinθ3)=μ1gl1sinθ1+μ2gl2sinθ2+μ3gl3sinθ3. L=T−V=2M1l12θ˙12+2M2l22θ˙22+2M3l32θ˙32+μ2l1l2θ˙1θ˙2cosΔ21+μ3l3θ˙3(l2θ˙2cosΔ32+l1θ˙1cosΔ31)−μ1gl1sinθ1−μ2gl2sinθ2−μ3gl3sinθ3=2M1l12θ˙12+2M2l22θ˙22+2M3l32θ˙32+μ2l2(l1θ˙1θ˙2cosΔ21−gsinθ2)+μ3l3(θ˙3(l2θ˙2cosΔ32+l1θ˙1cosΔ31)−gsinθ3)−μ1gl1sinθ1. Qθ1=−(b1b+c1b∣v1b∣)v1b⋅e^1b,θ1−(b1r+c1r∣v1r∣)v1r⋅e^1r,θ1−(b2b+c2b∣v2b∣)v2b⋅e^2b,θ1−(b2r+c2r∣v2r∣)v2r⋅e^2r,θ1−(b3b+c3b∣v3b∣)v3b⋅e^3b,θ1−(b3r+c3r∣v3r∣)v3r⋅e^3r,θ1. We will not substitute our values of v2b to v3r as they will only complicate our equation
Qθ1=−(b1b+c1bl1∣θ˙1∣)l12θ˙1−(b1r+c1r2l1∣θ˙1∣)4l12θ˙1−(b2b+c2b∣v2b∣)(l12θ˙1+l1l2θ˙2cosΔ21)−(b2r+c2r∣v2r∣)(l12θ˙1+2l1l2θ˙2cosΔ21)−(b3b+c3b∣v3b∣)(l12θ˙1+l1l2θ˙2cosΔ21+l1l3θ˙3cosΔ31)−(b3r+c3r∣v3r∣)(l12θ˙1+l1l2θ˙2cosΔ21+2l1l3θ˙3cosΔ31). The generalized dissipative force for θ2 is (pendulum 1 terms are ignored because their generalized basis vectors are zero)
Qθ2=−(b2b+c2b∣v2b∣)v2b⋅e^2b,θ2−(b2r+c2r∣v2r∣)v2r⋅e^2r,θ2−(b3b+c3b∣v3b∣)v3b⋅e^3b,θ2−(b3r+c3r∣v3r∣)v3r⋅e^3r,θ2=−(b2b+c2b∣v2b∣)(l22θ˙2+l1l2θ˙1cosΔ21)−(b2r+c2r∣v2r∣)(4l22θ˙2+2l1l2θ˙1cosΔ21)−(b3b+c3b∣v3b∣)(l22θ˙2+l1l2θ˙1cosΔ21+l2l3θ˙3cosΔ32)−(b3r+c3r∣v3r∣)(l22θ˙2+l1l2θ˙1cosΔ21+2l2l3θ˙3cosΔ32). Qθ3=−(b3b+c3b∣v3b∣)v3b⋅e^3b,θ3−(b3r+c3r∣v3r∣)v3r⋅e^3r,θ3=−(b3b+c3b∣v3b∣)(l32θ˙3+l1l3θ˙1cosΔ31+l2l3θ˙2cosΔ32)−(b3r+c3r∣v3r∣)(4l32θ˙3+2l1l3θ˙1cosΔ31+2l2l3θ˙3cosΔ32). pθ1p˙θ1Fθ1=∂θ˙1∂L=M1l12θ˙1+μ2l1l2θ˙2cosΔ21+μ3l1l3θ˙3cosΔ31=M1l12θ¨1+μ2l1l2(θ¨2cosΔ21−θ˙2(θ˙2−θ1)sinΔ21)+μ3l1l3(θ¨3cosΔ31−θ˙3(θ˙3−θ1˙)sinΔ31)=∂θ1∂L=−μ2l1l2θ˙1θ˙2∂θ1∂Δ21sinΔ21−μ3l1l3θ˙1θ˙3∂θ1∂Δ31sinΔ31−μ1gl1cosθ1=μ2l1l2θ˙1θ˙2sinΔ21+μ3l1l3θ˙1θ˙3sinΔ31−μ1gl1cosθ1 δθ1′L=p˙θ1−Fθ1=M1l12θ¨1+μ2l1l2(θ¨2cosΔ21−θ˙2(θ˙2−θ1)sinΔ21)+μ3l1l3(θ¨3cosΔ31−θ˙3(θ˙3−θ1˙)sinΔ31)−μ2l1l2θ˙1θ˙2sinΔ21+μ3l1l3θ˙1θ˙3sinΔ31+μ1gl1cosθ1=M1l12θ¨1+μ2l1l2(θ¨2cosΔ21−[θ˙2(θ˙2−θ1)+θ˙1θ˙2]sinΔ21)+μ3l1l3(θ¨3cosΔ31−[θ˙3(θ˙3−θ1˙)+θ˙1θ˙3]sinΔ31)+μ1gl1cosθ1=M1l12θ¨1+μ2l1l2(θ¨2cosΔ21−θ˙2(θ˙2−θ1)sinΔ21)+μ3l1l3(θ¨3cosΔ31−θ˙3(θ˙3−θ1˙)sinΔ31)−μ2l1l2θ˙1θ˙2sinΔ21+μ3l1l3θ˙1θ˙3sinΔ31+μ1gl1cosθ1=M1l12θ¨1+μ2l1l2(θ¨2cosΔ21−θ˙22sinΔ21)+μ3l1l3(θ¨3cosΔ31−θ˙32sinΔ31)+μ1gl1cosθ1. pθ2p˙θ2Fθ2δθ2′L=∂θ˙2∂L=M2l22θ˙2+μ2l1l2θ˙1cosΔ21+μ3l2l3θ˙3cosΔ32=M2l22θ¨2+μ2l1l2(θ¨1cosΔ21−θ˙1(θ˙2−θ˙1)sinΔ21)+μ3l2l3(θ¨3cosΔ32−θ˙3(θ˙3−θ˙2)sinΔ32)=−μ2l2(l1θ˙1θ˙2∂θ2∂Δ21sinΔ21+gcosθ2)−μ3l2l3θ˙2θ˙3∂θ2∂Δ32sinΔ32=−μ2l2(l1θ˙1θ˙2sinΔ21+gcosθ2)+μ3l2l3θ˙2θ˙3sinΔ32=M2l22θ¨2+μ2l1l2(θ¨1cosΔ21−θ˙1(θ˙2−θ˙1)sinΔ21)+μ3l2l3(θ¨3cosΔ32−θ˙3(θ˙3−θ˙2)sinΔ32)+μ2l2(l1θ˙1θ˙2sinΔ21+gcosθ2)−μ3l2l3θ˙2θ˙3sinΔ32=M2l22θ¨2+μ2l1l2(θ¨1cosΔ21+θ˙12sinΔ21)+μ3l2l3(θ¨3cosΔ32−θ˙32sinΔ32)+μ2l2gcosθ2=M2l22θ¨2+μ2l2(l1(θ¨1cosΔ21+θ˙12sinΔ21)+gcosθ2)+μ3l2l3(θ¨3cosΔ32−θ˙32sinΔ32). pθ3p˙θ3Fθ3δθ3′L=∂θ˙3∂L=M3l32θ˙3+μ3l3(l2θ˙2cosΔ32+l1θ˙1cosΔ31)=M3l32θ¨3+μ3l3(l2(θ¨2cosΔ32−θ˙2(θ˙3−θ˙2)sinΔ32)+l1(θ¨1cosΔ31−θ˙1(θ˙3−θ˙1)sinΔ31))=∂θ3∂L=−μ3l3[θ˙3(l2θ˙2∂θ3∂Δ32sinΔ32+l1θ˙1∂θ3∂Δ31sinΔ31)+gcosθ3]=−μ3l3[θ˙3(l2θ˙2sinΔ32+l1θ˙1sinΔ31)+gcosθ3]=M3l32θ¨3+μ3l3(l2(θ¨2cosΔ32−θ˙2(θ˙3−θ˙2)sinΔ32)+l1(θ¨1cosΔ31−θ˙1(θ˙3−θ˙1)sinΔ31))+μ3l3[θ˙3(l2θ˙2sinΔ32+l1θ˙1sinΔ31)+gcosθ3]=M3l32θ¨3+μ3l3[l2(θ¨2cosΔ32+θ˙22sinΔ32)+l1(θ¨1cosΔ31+θ˙12sinΔ31)+gcosθ3]. Hence given our equations of motion are δθi′L=Qθi, we could write them in matrix form as (given how long Qθi is, we will not expand on it)
⎣⎢⎡M1l12μ2l1l2cosΔ21μ3l1l3cosΔ31μ2l1l2cosΔ21M2l22μ3l2l3cosΔ32μ3l1l3cosΔ31μ3l2l3cosΔ32M3l32⎦⎥⎤⎣⎢⎡θ¨1θ¨2θ¨3⎦⎥⎤=⎣⎢⎡Qθ1−μ1gl1cosθ1+μ2l1l2θ˙22sinΔ21+μ3l1l3θ˙32sinΔ31Qθ2−μ2l2(l1θ˙12sinΔ21+gcosθ2)+μ3l2l3θ˙32sinΔ32Qθ3−μ3l3(l1θ˙12sinΔ31+l2θ˙22sinΔ32+gcosθ3)⎦⎥⎤.