This webpage uses the Runge-Kutta-Fehlberg fourth-order method with fifth-order error checking (RKF45) to approximate the solution to the problem of the double pendulum. See this article for the derivation of the equations of motion.
Figure 1: Diagram of the double pendulum. The equations being solved in this webpage are
θ¨1=(12m1r+m1b+m2b)l1−1[m2bl2(θ¨2cos(θ1−θ2)+θ˙22sin(θ1−θ2))+gcosθ1(2m1r+m2r+m1b+m2b)−(b1b+c1bl1θ˙1)l1θ˙1+(b2b+c2bl12θ˙12+l22θ˙22+2l1l2θ˙1θ˙2cos(θ1−θ2))(l1θ˙1+l2θ˙2cos(θ1−θ2))+(b1r+2c1rl1θ˙1)4l1θ˙1+⎝⎜⎛b2r+c2rl12θ˙12+4l22θ˙22+l2θ˙1θ˙2cos(θ1−θ2)⎠⎟⎞(l1θ˙1+2l2θ˙2cos(θ1−θ2))⎦⎥⎤θ¨2=(12m2r+m2b)l2−(12m1r+m1b+m2b)m2b2l2cos2(θ1−θ2)1⎣⎢⎡(12m1r+m1b+m2b)m2bcos(θ1−θ2)[m2bl2θ˙22sin(θ1−θ2)+gcosθ1(2m1r+m2r+m1b+m2b)−(b1b+c1bl1θ˙1)l1θ˙1+(b2b+c2bl12θ˙12+l22θ˙22+2l1l2θ˙1θ˙2cos(θ1−θ2))(l1θ˙1+l2θ˙2cos(θ1−θ2))+(b1r+2c1rl1θ˙1)4l1θ˙1+⎝⎜⎛b2r+c2rl12θ˙12+4l22θ˙22+l2θ˙1θ˙2cos(θ1−θ2)⎠⎟⎞(l1θ˙1+2l2θ˙2cos(θ1−θ2))]+m2b(l1θ˙12sin(θ1−θ2)−gcosθ2)−41⎝⎜⎛b2r+c2rl12θ˙12+4l22θ˙22+l1l2θ˙1θ˙2cos(θ1−θ2)⎠⎟⎞(2l1θ˙1cos(θ1−θ2)+l2θ˙2)−(b2b+c2bl12θ˙12+l22θ˙22+2l1l2θ˙1θ˙2cos(θ1−θ2))(l1θ˙1cos(θ1−θ2)+l2θ˙2)].