Deriving the equations of motion for the double elastic pendulum

Figure 1: Diagram of the double elastic pendulum.

This article focuses on deriving the equations of motion of the coupled elastic pendulums depicted in Figure 1. If you would like to see their solution, they can be found here.

We will derive our own equations of motion based on the Euler-Lagrange equation with dissipative forces

ddtLq˙iLqi=jFD,jrjqi.\begin{aligned} \dfrac{d}{dt} \dfrac{\partial \mathcal{L}}{\partial \dot{q}_i} - \dfrac{\partial \mathcal{L}}{\partial q_i} &= \sum_j \vec{F}_{D,j} \cdot \dfrac{\partial \vec{r}_j}{\partial q_i}. \end{aligned}

Where

  • jj refers to the component of the system we are analysing.

  • (qi)(q_i) are the generalized coordinates of the system.

  • (q˙i)(\dot{q}_i) are the first time derivatives of the generalized coordinates of the system.

  • rj\vec{r}_j is the position vector of component jj of the system.

  • L\mathcal{L} is the Lagrangian — the difference between the kinetic and potential energy — of the system.

  • pi=Lq˙ip_i = \dfrac{\partial \mathcal{L}}{\partial \dot{q}_i} is the generalized momentum canonical to qiq_i.

  • Fi=LqiF_i = \dfrac{\partial \mathcal{L}}{\partial q_i} is the generalized force canonical to qiq_i.

  • FD,j\vec{F}_{D,j} is the dissipative force vector for component jj.

  • e^j,i=rjqi\hat{e}_{j,i} = \dfrac{\partial \vec{r}_j}{\partial q_i} is the generalized basis vector canonical to qiq_i for component jj of the system.

  • The left-hand side of Equation Equation (1) can also be represented as δLδqi-\dfrac{\delta \mathcal{L}}{\delta q_i}, where δLδqi\dfrac{\delta \mathcal{L}}{\delta q_i} is the functional derivative of the Lagrangian with respect to qiq_i. To simplify things, we will call δLδqi=δLδqi-\dfrac{\delta \mathcal{L}}{\delta q_i} = \dfrac{\delta' \mathcal{L}}{\delta' q_i}

  • The right-hand side of Equation Equation (1) is also called the generalized dissipative force and can be represented as QiQ_i.

Coordinates, velocities and generalized basis vectors

As can be seen, we have four degrees of freedom in this system. The angles the two pendulums make with the positive xx-axis — θ1\theta_1 and θ2\theta_2, respectively — are among our degrees of freedom. We will also need degrees of freedom corresponding to the lengths of the pendulum rods. These degrees of freedom could either be the extent to which they are extended beyond their rest length or their total length. For the sake of simplicity, we will opt to use their total lengths — r1r_1 and r2r_2, respectively. Hence

Bob 1

x1b=r1cosθ1x˙1b=r˙1cosθ1r1θ˙1sinθ1y1b=r1sinθ1y˙1b=r˙1sinθ1+r1θ˙1cosθ1\begin{aligned} x_{1b} &= r_1 \cos{\theta_1} & \dot{x}_{1b} &= \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1}\\ y_{1b} &= r_1 \sin{\theta_1} & \dot{y}_{1b} &= \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} \end{aligned}

This means that the velocity of the first pendulum bob is

v1b=[x˙1by˙1b]=[r˙1cosθ1r1θ˙1sinθ1r˙1sinθ1+r1θ˙1cosθ1].\begin{aligned} \vec{v}_{1b} &= \begin{bmatrix} \dot{x}_{1b} \\ \dot{y}_{1b} \end{bmatrix} \\ &= \begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} \end{bmatrix}. \end{aligned}

Hence

v1b2=r˙12+r12θ˙12.\begin{aligned} |\vec{v}_{1b}|^2 &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2. \end{aligned}

Rod 1

We will calculate the rod positions and velocities two different ways. For calculating the kinetic energy, we will parameterize them in terms of ss — the distance along the pendulum — so that we can integrate over them. For calculating the potential energy and generalized dissipative force, we will calculate them using a centre of mass approach, as we will assume centre of mass approximations will work for these.

Parameterization

x1r=scosθ1x˙1r=s˙cosθ1sθ˙1sinθ1y1r=ssinθ1y˙1r=s˙sinθ1+sθ˙1cosθ1v1r2=s˙2+s2θ˙12=s2r˙12r12+s2θ˙12=s2[r˙12r12+θ˙12].\begin{aligned} x_{1r} &= s\cos{\theta_1} & \dot{x}_{1r} = \dot{s}\cos{\theta_1} - s\dot{\theta}_1 \sin{\theta_1} \\ y_{1r} &= s\sin{\theta_1} & \dot{y}_{1r} = \dot{s}\sin{\theta_1} + s\dot{\theta}_1 \cos{\theta_1} \\ |\vec{v}_{1r}|^2 &= \dot{s}^2 + s^2\dot{\theta}_1^2 \\ &= \dfrac{s^2\dot{r}_1^2}{r_1^2} + s^2\dot{\theta}_1^2 \\ &= s^2 \left[\dfrac{\dot{r}_1^2}{r_1^2}+\dot{\theta}_1^2\right]. \end{aligned}

Here we have assumed that the motion of the pendulum rod is uniform.

Centre of mass

x1r=r1cosθ12x˙1r=r1˙cosθ12r1θ˙1sinθ12y1r=r1sinθ12y˙1r=r1˙sinθ12+r1θ˙1cosθ12v1r=12[r˙1cosθ1r1θ˙1sinθ1r˙1sinθ1+r1θ˙1cosθ1]v1r2=14(r˙12+r12θ˙12)=v1b24.\begin{aligned} x_{1r} &= \dfrac{r_1\cos{\theta_1}}{2} & \dot{x}_{1r} = \dfrac{\dot{r_1}\cos{\theta_1}}{2} - \dfrac{r_1\dot{\theta}_1 \sin{\theta_1}}{2} \\ y_{1r} &= \dfrac{r_1\sin{\theta_1}}{2} & \dot{y}_{1r} = \dfrac{\dot{r_1}\sin{\theta_1}}{2} + \dfrac{r_1\dot{\theta}_1 \cos{\theta_1}}{2} \\ \vec{v}_{1r} &= \dfrac{1}{2} \begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1 \sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1} \end{bmatrix} \\ |\vec{v}_{1r}|^2 &= \dfrac{1}{4} \left(\dot{r}_1^2 + r_1^2 \dot{\theta}_1^2\right)\\ &= \dfrac{|\vec{v}_{1b}|^2}{4}. \end{aligned}

Bob 2

x2b=x1b+r2cosθ2x˙2=x˙1b+r˙2cosθ2r2θ˙2sinθ2y2b=y1b+r2sinθ2y˙2=y˙1b+r˙2sinθ2+r2θ˙2cosθ2.\begin{aligned} x_{2b} &= x_{1b} + r_2\cos{\theta_2} & \dot{x}_2 &= \dot{x}_{1b} + \dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2} \\ y_{2b} &= y_{1b} + r_2\sin{\theta_2} & \dot{y}_2 &= \dot{y}_{1b} + \dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}. \end{aligned}

As for the velocity of the second pendulum bob, it is

v2b=[r˙1cosθ1r1θ˙1sinθ1+r˙2cosθ2r2θ˙2sinθ2r˙1sinθ1+r1θ˙1cosθ1+r˙2sinθ2+r2θ˙2cosθ2].\begin{aligned} \vec{v}_{2b} &= \begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2} \end{bmatrix}. \end{aligned}

Let Δ=θ2θ1\Delta = \theta_2-\theta_1, then square of the velocity is

v2b2=r˙12cos2θ1+r12θ˙12sin2θ1+r˙22cos2θ2+r22θ˙22sin2θ22r1r˙1θ˙1cosθ1sinθ1+2r˙1r˙2cosθ1cosθ22r˙1r2θ˙2cosθ1sinθ22r1r˙2θ˙1sinθ1cosθ2+2r1r2θ˙1θ˙2sinθ1sinθ22r˙2r2θ˙2cosθ2sinθ2+r˙12sin2θ1+r12θ˙12cos2θ1+r˙22sin2θ2+r22θ˙22cos2θ2+2r1r˙1θ˙1sinθ1cosθ1+2r˙1r˙2sinθ1sinθ2+2r˙1r2θ˙2sinθ1cosθ2+2r1r˙2θ˙1cosθ1sinθ2+2r1r2θ˙1θ˙2cosθ1cosθ2+2r2r˙2θ˙2sinθ2cosθ2=r˙12+r12θ˙12+r˙22+r22θ˙22+2r1r˙1θ˙1(cosθ1sinθ1+cosθ1sinθ1)+2r˙1r˙2(cosθ1cosθ2+sinθ1sinθ2)+2r˙1r2θ˙2(cosθ1sinθ2+sinθ1cosθ2)+2r1r˙2θ˙1(sinθ1cosθ2+cosθ1sinθ2)+2r1r2θ˙1θ˙2(sinθ1sinθ2+cosθ1cosθ2)+2r2r˙2θ˙2(cosθ2sinθ2+sinθ2cosθ2)=r˙12+r12θ˙12+r˙22+r22θ˙22+2r˙1r˙2cos(θ2θ1)2r˙1r2θ2˙sin(θ2θ1)+2r1r˙2θ˙1sin(θ2θ1)+2r1r2θ˙1θ˙2cos(θ2θ1)=r˙12+r12θ˙12+r˙22+r22θ˙22+2r˙1r˙2cosΔ2r˙1r2θ2˙sinΔ+2r1r˙2θ˙1sinΔ+2r1r2θ˙1θ˙2cosΔ=r˙12+r12θ˙12+r˙22+r22θ˙22+2cosΔ(r˙1r˙2+r1r2θ˙1θ˙2)+2sinΔ(r1r˙2θ˙1r˙1r2θ˙2).\begin{aligned} |\vec{v}_{2b}|^2 &= \dot{r}_1^2 \cos^2{\theta_1} + r_1^2 \dot{\theta}_1^2\sin^2{\theta_1} + \dot{r}_2^2\cos^2{\theta_2} + r_2^2\dot{\theta}_2^2\sin^2{\theta_2} -2r_1\dot{r}_1\dot{\theta}_1 \cos{\theta}_1\sin{\theta_1} + 2\dot{r}_1\dot{r}_2\cos{\theta_1}\cos{\theta_2} - 2\dot{r}_1r_2\dot{\theta}_2\cos{\theta_1}\sin{\theta_2} - 2r_1\dot{r}_2 \dot{\theta}_1 \sin{\theta_1}\cos{\theta_2} + 2r_1r_2 \dot{\theta}_1\dot{\theta}_2\sin{\theta_1}\sin{\theta_2}\\ &-2\dot{r}_2r_2\dot{\theta}_2\cos{\theta_2}\sin{\theta_2} + \dot{r}_1^2\sin^2{\theta_1} + r_1^2\dot{\theta}_1^2\cos^2{\theta_1} + \dot{r}_2^2\sin^2{\theta_2} + r_2^2\dot{\theta}_2^2\cos^2{\theta_2} + 2r_1\dot{r}_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_1} + 2\dot{r}_1\dot{r}_2\sin{\theta_1}\sin{\theta_2} + 2\dot{r}_1r_2\dot{\theta}_2\sin{\theta_1}\cos{\theta_2} + 2r_1\dot{r}_2\dot{\theta}_1 \cos{\theta_1}\sin{\theta_2}\\ &+2r_1r_2\dot{\theta}_1\dot{\theta}_2\cos{\theta_1}\cos{\theta_2} + 2r_2\dot{r}_2\dot{\theta}_2\sin{\theta_2}\cos{\theta_2} \\ &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dot{r}_2^2 + r_2^2\dot{\theta}_2^2 + 2r_1\dot{r}_1\dot{\theta}_1(-\cos{\theta_1}\sin{\theta_1} + \cos{\theta_1}\sin{\theta_1}) + 2\dot{r}_1\dot{r}_2(\cos{\theta_1}\cos{\theta_2}+\sin{\theta_1}\sin{\theta_2})+2\dot{r}_1r_2\dot{\theta}_2(-\cos{\theta_1}\sin{\theta_2} + \sin{\theta_1}\cos{\theta_2}) \\ &+ 2r_1\dot{r}_2\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_2}+\cos{\theta_1}\sin{\theta_2}) + 2r_1r_2\dot{\theta}_1\dot{\theta}_2(\sin{\theta_1}\sin{\theta_2} + \cos{\theta_1}\cos{\theta_2}) + 2r_2\dot{r}_2\dot{\theta}_2 (-\cos{\theta_2}\sin{\theta_2} + \sin{\theta_2}\cos{\theta_2}) \\ &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dot{r}_2^2 + r_2^2\dot{\theta}_2^2 + 2\dot{r}_1\dot{r}_2 \cos{(\theta_2-\theta_1)} - 2\dot{r}_1r_2\dot{\theta_2}\sin{(\theta_2-\theta_1)} + 2r_1\dot{r}_2 \dot{\theta}_1 \sin{(\theta_2-\theta_1)} + 2r_1r_2\dot{\theta}_1\dot{\theta}_2\cos{(\theta_2-\theta_1)} \\ &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dot{r}_2^2 + r_2^2\dot{\theta}_2^2 + 2\dot{r}_1\dot{r}_2 \cos{\Delta} - 2\dot{r}_1r_2\dot{\theta_2}\sin{\Delta} + 2r_1\dot{r}_2 \dot{\theta}_1 \sin{\Delta} + 2r_1r_2\dot{\theta}_1\dot{\theta}_2\cos{\Delta} \\ &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dot{r}_2^2 + r_2^2\dot{\theta}_2^2 + 2\cos{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) + 2\sin{\Delta}(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2). \end{aligned}

Let us define v2bI2=r˙22+r22θ˙22|\vec{v}_{2b}^I|^2 = \dot{r}_2^2+r_2^2\dot{\theta}_2^2, as this will simplify our Lagrangian later. As for the remaining terms in v2b2|\vec{v}_{2b}|^2, they are contained with Δv2,12|\Delta \vec{v}_{2,1}|^2.

Δv2,12=2cosΔ(r˙1r˙2+r1r2θ˙1θ˙2)+2sinΔ(r1r˙2θ˙1r˙1r2θ˙2).\begin{aligned} |\Delta \vec{v}_{2,1}|^2 &= 2\cos{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) + 2\sin{\Delta}(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2). \end{aligned}

Rod 2

Parameterization

x2r=r1cosθ1+scosθ2x˙2r=r˙1cosθ1r1θ˙1sinθ1+s˙cosθ2sθ˙2sinθ2y2r=r1sinθ1+ssinθ2y˙2r=r˙1sinθ1+r1θ˙1cosθ1+s˙sinθ2+sθ˙2cosθ2\begin{aligned} x_{2r} &= r_1\cos{\theta_1} + s\cos{\theta_2} & \dot{x}_{2r} = \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1\sin{\theta_1} + \dot{s}\cos{\theta_2} - s\dot{\theta}_2 \sin{\theta_2} \\ y_{2r} &= r_1\sin{\theta_1} + s\sin{\theta_2} & \dot{y}_{2r} = \dot{r}_1 \sin{\theta_1} + r_1 \dot{\theta}_1\cos{\theta_1} + \dot{s}\sin{\theta_2} + s\dot{\theta}_2 \cos{\theta_2} \end{aligned}
v2r2=r˙12+r12θ˙12+s˙2+s2θ˙22+2cosΔ(r˙1s˙+r1sθ˙1θ˙2)+2sinΔ(r1s˙θ˙1r˙1sθ˙2)=r˙12+r12θ˙12+r˙22s2r22+s2θ˙22+2cosΔ(r˙1r˙2sr2+r1sθ˙1θ˙2)+2sinΔ(r1sr˙2θ˙1r2r˙1sθ˙2).\begin{aligned} |\vec{v}_{2r}|^2 &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dot{s}^2 + s^2\dot{\theta}_2^2 + 2\cos{\Delta}\left(\dot{r}_1\dot{s} + r_1s\dot{\theta}_1\dot{\theta}_2\right) + 2\sin{\Delta}\left(r_1\dot{s}\dot{\theta}_1-\dot{r}_1s\dot{\theta}_2\right) \\ &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dfrac{\dot{r}_2^2 s^2}{r_2^2} + s^2\dot{\theta}_2^2 + 2\cos{\Delta}\left(\dfrac{\dot{r}_1\dot{r}_2 s}{r_2} + r_1s\dot{\theta}_1\dot{\theta}_2\right) + 2\sin{\Delta}\left(\dfrac{r_1s\dot{r}_2\dot{\theta}_1}{r_2}-\dot{r}_1s\dot{\theta}_2\right). \end{aligned}

Centre of mass

x2r=r1cosθ1+r2cosθ22x˙2r=r1˙cosθ1r1θ˙1sinθ1+r2˙cosθ22r2θ˙2sinθ22y2r=r1sinθ1+r2sinθ22y˙2r=r1˙sinθ1+r1θ˙1cosθ1+r2˙sinθ22+r2θ˙2cosθ22\begin{aligned} x_{2r} &= r_1\cos{\theta_1} + \dfrac{r_2\cos{\theta_2}}{2} & \dot{x}_{2r} = \dot{r_1}\cos{\theta_1} - r_1\dot{\theta}_1 \sin{\theta_1} + \dfrac{\dot{r_2}\cos{\theta_2}}{2} - \dfrac{r_2\dot{\theta}_2 \sin{\theta_2}}{2} \\ y_{2r} &= r_1\sin{\theta_1} + \dfrac{r_2\sin{\theta_2}}{2} & \dot{y}_{2r} = \dot{r_1}\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dfrac{\dot{r_2}\sin{\theta_2}}{2} + \dfrac{r_2\dot{\theta}_2 \cos{\theta_2}}{2} \\ \end{aligned}
v2r2=r˙12cos2θ12r˙1r1θ˙1sinθ1cosθ1+r12θ˙12sin2θ1+r˙22cos2θ24+r22θ˙22sin2θ24r2r˙2θ˙2cosθ2sinθ22+r˙1r˙2cosθ1cosθ2r˙1r2θ˙2cosθ1sinθ2+r1r˙2θ˙1sinθ1cosθ2+r1r2θ˙1θ˙2sinθ1sinθ2+r˙12sin2θ1+r12θ˙12cos2θ1+r˙22sin2θ24+r22θ˙22cos2θ24+2r˙1r1θ˙1sinθ1cosθ1+r˙1r˙2sinθ1sinθ2+r˙1r2θ˙2sinθ1cosθ2+r1r˙2θ˙1cosθ1sinθ2+r1r2θ1˙θ2˙cosθ1cosθ2+r2r˙2θ˙2sinθ2cosθ22=r˙12+r12θ˙12+r˙22+r22θ˙224+r1r˙2θ˙1sinΔ+r˙1r˙2cosΔ+r1r2θ˙1θ˙2cosΔr˙1r1θ˙1sinΔ=r˙12+r12θ˙12+r˙22+r22θ˙224+sinΔ(r1r˙2θ˙1r˙1r1θ˙1)+cosΔ(r˙1r˙2+r1r2θ˙1θ˙2)=v1b2+v2bI24+Δv2,122\begin{aligned} |\vec{v}_{2r}|^2 &= \dot{r}_1^2\cos^2{\theta_1} - 2\dot{r}_1r_1\dot{\theta}_1 \sin{\theta_1}\cos{\theta_1} + r_1^2\dot{\theta}_1^2\sin^2{\theta_1} + \dfrac{\dot{r}_2^2\cos^2{\theta_2}}{4} + \dfrac{r_2^2\dot{\theta}_2^2\sin^2{\theta_2}}{4} - \dfrac{r_2\dot{r}_2\dot{\theta}_2 \cos{\theta_2}\sin{\theta_2}}{2} + \\ & \dot{r}_1\dot{r}_2\cos{\theta_1}\cos{\theta_2} - \dot{r}_1r_2\dot{\theta}_2 \cos{\theta_1}\sin{\theta_2} + r_1\dot{r}_2 \dot{\theta}_1 \sin{\theta_1}\cos{\theta_2} + r_1r_2 \dot{\theta}_1 \dot{\theta}_2 \sin{\theta_1}\sin{\theta_2} + \dot{r}_1^2\sin^2{\theta_1} + \\ & r_1^2 \dot{\theta}_1^2\cos^2{\theta_1} + \dfrac{\dot{r}_2^2\sin^2{\theta_2}}{4} + \dfrac{r_2^2\dot{\theta}_2^2\cos^2{\theta_2}}{4} + 2\dot{r}_1r_1 \dot{\theta}_1\sin{\theta_1}\cos{\theta_1} + \dot{r}_1\dot{r}_2\sin{\theta_1}\sin{\theta_2} + \dot{r}_1 r_2\dot{\theta}_2 \sin{\theta_1}\cos{\theta_2} + \\ & r_1\dot{r}_2 \dot{\theta}_1 \cos{\theta_1}\sin{\theta_2} + r_1r_2\dot{\theta_1}\dot{\theta_2}\cos{\theta_1}\cos{\theta_2} + \dfrac{r_2\dot{r}_2\dot{\theta}_2\sin{\theta_2}\cos{\theta_2}}{2}\\ &= \dot{r}_1^2 + r_1^2\dot{\theta}_1^2 + \dfrac{\dot{r}_2^2 + r_2^2\dot{\theta}_2^2}{4} + r_1\dot{r}_2\dot{\theta}_1\sin{\Delta} + \dot{r}_1\dot{r}_2 \cos{\Delta} + r_1r_2 \dot{\theta}_1\dot{\theta}_2 \cos{\Delta} - \dot{r}_1r_1 \dot{\theta}_1\sin{\Delta} \\ &= \dot{r}_1^2 + r_1^2\dot{\theta}_1^2 + \dfrac{\dot{r}_2^2 + r_2^2\dot{\theta}_2^2}{4} + \sin{\Delta}(r_1\dot{r}_2\dot{\theta}_1 - \dot{r}_1r_1 \dot{\theta}_1) + \cos{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2 \dot{\theta}_1\dot{\theta}_2) \\ &= |\vec{v}_{1b}|^2 + \dfrac{|\vec{v}_{2b}^I|^2}{4} + \dfrac{|\Delta \vec{v}_{2,1}|^2}{2} \end{aligned}

Dissipative forces

We will assume that the dissipative forces are proportion to the velocity and velocity squared of the pendulum bobs. Meaning they will have the form

FD,j=(bj+cjvj)vj.\begin{aligned} \vec{F}_{D,j} &= -(b_j+c_j|\vec{v}_j|)\vec{v}_j. \end{aligned}

Where jj is the pendulum bob of interest, bjb_j and cjc_j are constants.

Kinetic energy

The kinetic energy of the system is given by

T=m1b2v1b2+0r1m1r2r1v1r2ds+m2b2v2b2+0r2m2r2r2v2r2ds\begin{aligned} T &= \dfrac{m_{1b}}{2}|\vec{v}_{1b}|^2 + \int_0^{r_1}\dfrac{m_{1r}}{2r_1} |\vec{v}_{1r}|^2 ds + \dfrac{m_{2b}}{2}|\vec{v}_{2b}|^2 + \int_0^{r_2} \dfrac{m_{2r}}{2r_2} |\vec{v}_{2r}|^2 ds \end{aligned}

Rod 1

0r1m1r2r1v1r2ds=0r1m1r2r1s2[r˙12r12+θ˙12]ds=m1r2r1[r˙12r12+θ˙12][s33]0r1=m1r2r1[r˙12r12+θ˙12]r133=m1r6[r˙12+r12θ˙12]=m1r6v1b2.\begin{aligned} \int_0^{r_1}\dfrac{m_{1r}}{2r_1} |\vec{v}_{1r}|^2 ds &= \int_0^{r_1} \dfrac{m_{1r}}{2r_1} s^2 \left[\dfrac{\dot{r}_1^2}{r_1^2}+\dot{\theta}_1^2\right] ds \\ &= \dfrac{m_{1r}}{2r_1} \left[\dfrac{\dot{r}_1^2}{r_1^2}+\dot{\theta}_1^2\right] \left[\dfrac{s^3}{3}\right]_0^{r_1} \\ &= \dfrac{m_{1r}}{2r_1} \left[\dfrac{\dot{r}_1^2}{r_1^2}+\dot{\theta}_1^2\right] \dfrac{r_1^3}{3} \\ &= \dfrac{m_{1r}}{6}\left[\dot{r}_1^2+r_1^2\dot{\theta}_1^2\right] \\ &= \dfrac{m_{1r}}{6} |\vec{v}_{1b}|^2. \end{aligned}

Rod 2

0r2m2r2r2v2r2ds=0r2m2r2r2[r˙12+r12θ˙12+r˙22s2r22+s2θ˙22+2cosΔ(r˙1r˙2sr2+r1sθ˙1θ˙2)+2sinΔ(r1sr˙2θ˙1r2r˙1sθ˙2)]ds=m2r2v1b2+m2r2r20r2s2(r˙22r22+θ˙22)+2s[cosΔ(r˙1r˙2r2+r1θ˙1θ˙2)+sinΔ(r1r˙2θ˙1r2r˙1θ˙2)]ds=m2r2v1b2+m2r2r2[r233(r˙22r22+θ˙22)+r22[cosΔ(r˙1r˙2r2+r1θ˙1θ˙2)+sinΔ(r1r˙2θ˙1r2r˙1θ˙2)]]=m2r2v1b2+m2r6v2bI2+m2r4Δv2,1I2\begin{aligned} \int_0^{r_2} \dfrac{m_{2r}}{2r_2} |\vec{v}_{2r}|^2 ds &= \int_0^{r_2} \dfrac{m_{2r}}{2r_2} \left[\dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dfrac{\dot{r}_2^2 s^2}{r_2^2} + s^2\dot{\theta}_2^2 + 2\cos{\Delta}\left(\dfrac{\dot{r}_1\dot{r}_2 s}{r_2} + r_1s\dot{\theta}_1\dot{\theta}_2\right) + 2\sin{\Delta}\left(\dfrac{r_1s\dot{r}_2\dot{\theta}_1}{r_2}-\dot{r}_1s\dot{\theta}_2\right)\right] ds \\ &= \dfrac{m_{2r}}{2} |\vec{v}_{1b}|^2 + \dfrac{m_{2r}}{2r_2}\int_0^{r_2} s^2\left(\dfrac{\dot{r}_2^2}{r_2^2} + \dot{\theta}_2^2\right) + 2s\left[\cos{\Delta}\left(\dfrac{\dot{r}_1\dot{r}_2 }{r_2} + r_1\dot{\theta}_1\dot{\theta}_2\right) + \sin{\Delta}\left(\dfrac{r_1\dot{r}_2\dot{\theta}_1}{r_2}-\dot{r}_1\dot{\theta}_2\right)\right]ds \\ &= \dfrac{m_{2r}}{2} |\vec{v}_{1b}|^2 + \dfrac{m_{2r}}{2r_2}\left[\dfrac{r_2^3}{3}\left(\dfrac{\dot{r}_2^2}{r_2^2} + \dot{\theta}_2^2\right) + r_2^2\left[\cos{\Delta}\left(\dfrac{\dot{r}_1\dot{r}_2 }{r_2} + r_1\dot{\theta}_1\dot{\theta}_2\right) + \sin{\Delta}\left(\dfrac{r_1\dot{r}_2\dot{\theta}_1}{r_2}-\dot{r}_1\dot{\theta}_2\right)\right]\right] \\ &= \dfrac{m_{2r}}{2} |\vec{v}_{1b}|^2 + \dfrac{m_{2r}}{6} |\vec{v}_{2b}^{I}|^2 + \dfrac{m_{2r}}{4}|\Delta \vec{v}_{2,1}^I|^2 \end{aligned}

Final result

T=m1b2v1b2+m1r6v1b2+m2b2(v1b2+v2bI2+Δv2,1I2)+m2r2v1b2+m2r6v2bI2+m2r4Δv2,1I2=m1b+m1r3+m2b+m2r2v1b2+m2b+m2r32v2bI2+m2b+m2r22Δv2,1I2.\begin{aligned} T &= \dfrac{m_{1b}}{2}|\vec{v}_{1b}|^2 + \dfrac{m_{1r}}{6} |\vec{v}_{1b}|^2 + \dfrac{m_{2b}}{2}(|\vec{v}_{1b}|^2+|\vec{v}_{2b}^I|^2+|\Delta \vec{v}_{2,1}^I|^2) + \dfrac{m_{2r}}{2} |\vec{v}_{1b}|^2 + \dfrac{m_{2r}}{6} |\vec{v}_{2b}^{I}|^2 + \dfrac{m_{2r}}{4}|\Delta \vec{v}_{2,1}^I|^2 \\ &= \dfrac{m_{1b}+\dfrac{m_{1r}}{3}+m_{2b}+m_{2r}}{2} |\vec{v}_{1b}|^2 + \dfrac{m_{2b} + \dfrac{m_{2r}}{3}}{2}|\vec{v}_{2b}^I|^2 + \dfrac{m_{2b}+\dfrac{m_{2r}}{2}}{2}|\Delta \vec{v}_{2,1}^I|^2. \end{aligned}

Let Mj=i=jb2rmi(12δi,jr3)M_j = \displaystyle \sum_{i=jb}^{2r} m_i \left(1-\dfrac{2\delta_{i,jr}}{3}\right) and μj=i=jb2rmi(1δi,jr2)\mu_j = \displaystyle \sum_{i=jb}^{2r} m_i \left(1-\dfrac{\delta_{i,jr}}{2}\right), where δi,j\delta_{i,j} is the Kronecker delta symbol. For instance, M1=m1b+m1r3+m2b+m2rM_1 = m_{1b} + \dfrac{m_{1r}}{3} + m_{2b} + m_{2r} and μ2=m2b+m2r2\mu_2 = m_{2b} + \dfrac{m_{2r}}{2}. Then

T=M12v1b2+M22v2bI2+μ22Δv2,1I2.\begin{aligned} T &= \dfrac{M_1}{2} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2}|\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}|\Delta \vec{v}_{2,1}^I|^2. \end{aligned}

Potential energy

The potential energy of the system is given by

V=m1bgy1b+m1rgy1r+m2bgy2b+m2rgy2r+k1(r1l1)2+k2(r2l2)22=m1bgr1sinθ1+m1rgr1sinθ12+m2rg(r1sinθ1+r2sinθ22)+m2bg(r1sinθ1+r2sinθ2)+k1(r1l1)2+k2(r2l2)22=(m1b+m1r2+m2b+m2r)gr1sinθ1+(m2b+m2r2)gr2sinθ2+k1(r1l1)2+k2(r2l2)22=μ1gr1sinθ1+μ2gr2sinθ2+k1(r1l1)2+k2(r2l2)22\begin{aligned} V &= m_{1b} gy_{1b} + m_{1r}gy_{1r} + m_{2b} gy_{2b} + m_{2r}gy_{2r} + \dfrac{k_1(r_1-l_1)^2+k_2(r_2-l_2)^2}{2}\\ &= m_{1b} gr_1\sin{\theta_1} + \dfrac{m_{1r} gr_1\sin{\theta_1}}{2} + m_{2r}g\left(r_1\sin{\theta_1} + \dfrac{r_2\sin{\theta_2}}{2}\right) + m_{2b}g(r_1\sin{\theta_1} + r_2\sin{\theta_2}) + \dfrac{k_1(r_1-l_1)^2+k_2(r_2-l_2)^2}{2}\\ &= \left(m_{1b} + \dfrac{m_{1r}}{2} + m_{2b} + m_{2r}\right)gr_1\sin{\theta_1} + \left(m_{2b}+\dfrac{m_{2r}}{2}\right)gr_2\sin{\theta_2} + \dfrac{k_1(r_1-l_1)^2+k_2(r_2-l_2)^2}{2} \\ &= \mu_1 gr_1\sin{\theta_1} + \mu_2 gr_2\sin{\theta_2} + \dfrac{k_1(r_1-l_1)^2+k_2(r_2-l_2)^2}{2} \end{aligned}

Lagrangian

Hence the Lagrangian of the system is

L=TV=M12v1b2+M22v2bI2+μ22Δv2,1I2(μ1gr1sinθ1+μ2gr2sinθ2+k1(r1l1)2+k2(r2l2)22)=M12v1b2+M22v2bI2+μ22(Δv2,1I22gr2sinθ2)μ1gr1sinθ1k1(r1l1)2+k2(r2l2)22.\begin{aligned} \mathcal{L} &= T - V \\ &= \dfrac{M_1}{2} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2}|\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}|\Delta \vec{v}_{2,1}^I|^2 - \left(\mu_1 gr_1\sin{\theta_1} + \mu_2 gr_2\sin{\theta_2} + \dfrac{k_1(r_1-l_1)^2+k_2(r_2-l_2)^2}{2}\right) \\ &= \dfrac{M_1}{2} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2}|\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}(|\Delta \vec{v}_{2,1}^I|^2 - 2gr_2 \sin{\theta_2}) - \mu_1 gr_1 \sin{\theta_1} - \dfrac{k_1(r_1-l_1)^2+k_2(r_2-l_2)^2}{2}. \end{aligned}

We will not expand this Lagrangian, as doing so just adds to its complexity. Instead, we will calculate the derivatives of each of its components.

Derivative of components of the Lagrangian

Square of the velocity of the first pendulum's bob

The relevant partial and standard derivatives are:

v1b2r1=2r1θ˙12v1b2r2=0v1b2θ1=0v1b2θ2=0v1b2r˙1=2r˙1v1b2r˙2=0v1b2θ˙1=2r12θ˙1v1b2θ˙2=0ddtv1b2r˙1=2r¨1ddtv1b2r˙2=0ddtv1b2θ˙1=2r12θ¨1+4r1r˙1θ˙1ddtv1b2θ˙2=0\begin{aligned} \dfrac{\partial |\vec{v}_{1b}|^2}{\partial r_1} &= 2r_1\dot{\theta}_1^2 & \dfrac{\partial |\vec{v}_{1b}|^2}{\partial r_2} &= 0 & \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \theta_1} &= 0 & \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \theta_2} &= 0\\ \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{r}_1} &= 2\dot{r}_1 & \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{r}_2} &= 0 & \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{\theta}_1} &= 2r_1^2\dot{\theta}_1 & \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{\theta}_2} &= 0\\ \dfrac{d}{dt} \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{r}_1} &= 2\ddot{r}_1 & \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{r}_2} &= 0 & \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{\theta}_1} &= 2r_1^2 \ddot{\theta}_1 + 4r_1\dot{r}_1\dot{\theta}_1 & \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{\theta}_2} &= 0 \end{aligned}

Hence the negative functional derivatives are

δv1b2δr1=ddtv1b2r˙1v1b2r1δv1b2δr2=ddtv1b2r˙2v1b2r2δv1b2δθ1=ddtv1b2θ˙1v1b2θ1δv1b2δθ2=ddtv1b2θ˙2v1b2θ2=2r¨12r1θ˙12=0=2r12θ¨1+4r1r˙1θ˙1=0.\begin{aligned} \dfrac{\delta' |\vec{v}_{1b}|^2}{\delta' r_1} &= \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{r}_1} - \dfrac{\partial |\vec{v}_{1b}|^2}{\partial r_1} & \dfrac{\delta' |\vec{v}_{1b}|^2}{\delta' r_2} &= \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{r}_2} - \dfrac{\partial |\vec{v}_{1b}|^2}{\partial r_2} & \dfrac{\delta' |\vec{v}_{1b}|^2}{\delta' \theta_1} &= \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{\theta}_1} - \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \theta_1} & \dfrac{\delta' |\vec{v}_{1b}|^2}{\delta' \theta_2} &= \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{\theta}_2} - \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \theta_2}\\ &= 2\ddot{r}_1 - 2r_1\dot{\theta}_1^2 & &= 0 & &=2r_1^2\ddot{\theta}_1 + 4r_1\dot{r}_1\dot{\theta}_1 & &= 0. \end{aligned}

Second bob's independent velocity squared

Hence the partial and standard derivatives of the difference in the square of each bob's velocity is

v2bI2r1=0v2bI2r2=2r2θ˙22v2bI2θ1=0v2bI2θ2=0v2bI2r˙1=0v2bI2r˙2=2r˙2v2bI2θ˙1=0v2bI2θ˙2=2r22θ˙2\begin{aligned} \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial r_1} &= 0 & \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial r_2} &= 2r_2\dot{\theta}_2^2 \\ \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \theta_1} &= 0 & \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \theta_2} &= 0 \\ \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{r}_1} &= 0 & \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{r}_2} &= 2\dot{r}_2 \\ \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{\theta}_1} &= 0 & \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{\theta}_2} &=2r_2^2\dot{\theta}_2 \end{aligned}
ddtv2bI2r˙1=0ddtv2bI2r˙2=2r¨2ddtv2bI2θ˙1=0ddtv2bI2θ˙2=2r22θ¨2+4r2r˙2θ˙2.\begin{aligned} \dfrac{d}{dt} \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{r}_1} &= 0 & \dfrac{d}{dt} \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{r}_2} &= 2\ddot{r}_2 \\ \dfrac{d}{dt} \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{\theta}_1} &= 0 & \dfrac{d}{dt} \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{\theta}_2} &= 2r_2^2\ddot{\theta}_2 + 4r_2\dot{r}_2\dot{\theta}_2. \end{aligned}

Hence

δr1v2bI2=0δr2v2bI2=2(r¨2r2θ˙22)δθ1v2bI2=0δθ2v2bI2=2r22θ¨2+4r2r˙2θ˙2.\begin{aligned} \delta_{r_1} |\vec{v}_{2b}^I|^2 &= 0 & \delta_{r_2} |\vec{v}_{2b}^I|^2 &= 2(\ddot{r}_2 - r_2\dot{\theta}_2^2) \\ \delta_{\theta_1} |\vec{v}_{2b}^I|^2 &=0 & \delta_{\theta_2} |\vec{v}_{2b}^I|^2 &= 2r_2^2 \ddot{\theta}_2 + 4r_2\dot{r}_2\dot{\theta}_2. \end{aligned}

Difference in independent velocities squared

Δv2,1I2r1=2r2θ˙1θ˙2cosΔ+2r˙2θ˙1sinΔΔv2,1I2r2=2r1θ˙1θ˙2cosΔ2r˙1θ˙2sinΔΔv2,1I2θ1=2sinΔ1(r˙1r˙2+r1r2θ˙1θ˙2)+2cosΔ1(r1r˙2θ˙1r˙1r2θ˙2)Δv2,1I2θ2=2sinΔ(r˙1r˙2+r1r2θ˙1θ˙2)+2cosΔ(r1r˙2θ˙1r˙1r2θ˙2)=2sinΔ(r˙1r˙2+r1r2θ˙1θ˙2)2cosΔ(r1r˙2θ˙1r˙1r2θ˙2)Δv2,12r˙1=2r˙2cosΔ2r2θ˙2sinΔΔv2,1I2r˙2=2r˙1cosΔ+2r1θ˙1sinΔΔv2,1I2θ˙1=2r1r2θ˙2cosΔ+2r1r˙2sinΔΔv2,1I2θ˙2=2r1r2θ˙1cosΔ2r˙1r2sinΔ\begin{aligned} \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial r_1} &= 2r_2\dot{\theta}_1\dot{\theta}_2\cos{\Delta} + 2\dot{r}_2\dot{\theta}_1\sin{\Delta} & \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial r_2} &= 2r_1\dot{\theta}_1\dot{\theta}_2\cos{\Delta}-2\dot{r}_1\dot{\theta}_2\sin{\Delta}\\ \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \theta_1} &= -2\sin{\Delta}\cdot -1(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) + 2\cos{\Delta}\cdot -1(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2) & \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \theta_2} &= -2\sin{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) + 2\cos{\Delta}(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2) \\ &= 2\sin{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) - 2\cos{\Delta}(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2)\\ \dfrac{\partial |\Delta \vec{v}_{2,1}|^2}{\partial \dot{r}_1} &= 2\dot{r}_2\cos{\Delta} - 2r_2\dot{\theta}_2\sin{\Delta} & \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{r}_2} &= 2\dot{r}_1\cos{\Delta} + 2r_1\dot{\theta}_1\sin{\Delta} \\ \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{\theta}_1} &= 2r_1r_2\dot{\theta}_2\cos{\Delta} + 2r_1\dot{r}_2\sin{\Delta} & \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{\theta}_2} &=2r_1r_2\dot{\theta}_1\cos{\Delta} - 2\dot{r}_1r_2\sin{\Delta} \end{aligned}

Let us define Δ˙1=2θ˙1θ˙2\dot{\Delta}_1 = 2\dot{\theta}_1 - \dot{\theta}_2 and Δ˙2=2θ˙2θ˙1\dot{\Delta}_2 = 2\dot{\theta}_2 - \dot{\theta}_1.

ddtΔv2,1I2r˙1=2r¨2cosΔ2r˙2Δ˙sinΔ2r˙2θ˙2sinΔ2r2θ¨2sinΔ2r2θ˙2Δ˙cosΔ=2cosΔ(r¨2r2θ˙2Δ˙)2sinΔ(r˙2Δ˙+r˙2θ˙2+r2θ¨2)=2cosΔ(r¨2r2θ˙2Δ˙)2sinΔ(r˙2(2θ˙2θ˙1)+r2θ¨2)=2cosΔ(r¨2r2θ˙2Δ˙)2sinΔ(r˙2Δ˙2+r2θ¨2)ddtΔv2,1I2r˙2=2r¨1cosΔ2r˙1Δ˙sinΔ+2r˙1θ˙1sinΔ+2r1θ¨1sinΔ+2r1θ˙1Δ˙cosΔ=2cosΔ(r¨1+r1θ˙1Δ˙)+2sinΔ(r1θ¨1+r˙1θ˙1r˙1Δ˙)=2cosΔ(r¨1+r1θ˙1Δ˙)+2sinΔ(r1θ¨1+r˙1(2θ˙1θ¨2))=2cosΔ(r¨1+r1θ˙1Δ˙)+2sinΔ(r1θ¨1+r˙1Δ˙1)ddtΔv2,1I2θ˙1=2r˙1r2θ˙2cosΔ+2r1r˙2θ˙2cosΔ+2r1r2θ¨2cosΔ2r1r2θ˙2Δ˙sinΔ+2r˙1r˙2sinΔ+2r1r¨2sinΔ+2r1r˙2Δ˙cosΔ=2cosΔ(r˙1r2θ˙2+r1r˙2(θ˙2+Δ˙)+r1r2θ¨2)+2sinΔ(r˙1r˙2+r1r¨2r1r2θ˙2Δ˙)=2cosΔ(r˙1r2θ˙2+r1r˙2Δ˙2+r1r2θ¨2)+2sinΔ(r˙1r˙2+r1r¨2r1r2θ˙2Δ˙)ddtΔv2,1I2θ˙2=2r˙1r2θ˙1cosΔ+2r1r˙2θ˙1cosΔ+2r1r2θ¨1cosΔ2r1r2θ˙1Δ˙sinΔ2r¨1r2sinΔ2r˙1r˙2sinΔ2r˙1r2Δ˙cosΔ=2cosΔ(r˙1r2(θ˙1Δ˙)+r1r˙2θ˙1+r1r2θ¨1)2sinΔ(r1r2θ˙1Δ˙+r¨1r2+r˙1r˙2)=2cosΔ(r˙1r2Δ˙1+r1r˙2θ˙1+r1r2θ¨1)2sinΔ(r1r2θ˙1Δ˙+r¨1r2+r˙1r˙2).\begin{aligned} \dfrac{d}{dt} \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{r}_1} &= 2\ddot{r}_2\cos{\Delta} - 2\dot{r}_2\dot{\Delta}\sin{\Delta} - 2\dot{r}_2\dot{\theta}_2\sin{\Delta} - 2r_2\ddot{\theta}_2\sin{\Delta} - 2r_2\dot{\theta}_2\dot{\Delta}\cos{\Delta} \\ &= 2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2\dot{\Delta}) - 2\sin{\Delta}(\dot{r}_2\dot{\Delta} + \dot{r}_2\dot{\theta}_2+r_2\ddot{\theta}_2)\\ &= 2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2\dot{\Delta}) - 2\sin{\Delta}(\dot{r}_2(2\dot{\theta}_2-\dot{\theta}_1)+r_2\ddot{\theta}_2)\\ &= 2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2\dot{\Delta}) - 2\sin{\Delta}(\dot{r}_2\dot{\Delta}_2+r_2\ddot{\theta}_2)\\ \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{r}_2} &= 2\ddot{r}_1 \cos{\Delta} -2\dot{r}_1\dot{\Delta}\sin{\Delta} + 2\dot{r}_1\dot{\theta}_1\sin{\Delta} + 2r_1\ddot{\theta}_1\sin{\Delta} + 2r_1\dot{\theta}_1\dot{\Delta}\cos{\Delta} \\ &= 2\cos{\Delta}(\ddot{r}_1 + r_1\dot{\theta}_1 \dot{\Delta}) + 2\sin{\Delta}(r_1\ddot{\theta}_1 + \dot{r}_1\dot{\theta}_1 - \dot{r}_1\dot{\Delta})\\ &= 2\cos{\Delta}(\ddot{r}_1 + r_1\dot{\theta}_1 \dot{\Delta}) + 2\sin{\Delta}(r_1\ddot{\theta}_1 + \dot{r}_1(2\dot{\theta}_1 - \ddot{\theta}_2))\\ &= 2\cos{\Delta}(\ddot{r}_1 + r_1\dot{\theta}_1 \dot{\Delta}) + 2\sin{\Delta}(r_1\ddot{\theta}_1 + \dot{r}_1\dot{\Delta}_1)\\ \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{\theta}_1} &= 2\dot{r}_1r_2\dot{\theta}_2\cos{\Delta} + 2r_1\dot{r}_2\dot{\theta}_2\cos{\Delta} + 2r_1r_2\ddot{\theta}_2\cos{\Delta} - 2r_1r_2\dot{\theta}_2\dot{\Delta}\sin{\Delta} + 2\dot{r}_1\dot{r}_2\sin{\Delta} + 2r_1\ddot{r}_2\sin{\Delta} + 2r_1\dot{r}_2\dot{\Delta}\cos{\Delta} \\ &= 2\cos{\Delta}(\dot{r}_1r_2\dot{\theta}_2 + r_1\dot{r}_2 (\dot{\theta}_2+\dot{\Delta})+r_1r_2\ddot{\theta}_2) +2\sin{\Delta}(\dot{r}_1\dot{r}_2+r_1\ddot{r}_2-r_1r_2\dot{\theta}_2\dot{\Delta})\\ &= 2\cos{\Delta}(\dot{r}_1r_2\dot{\theta}_2 + r_1\dot{r}_2 \dot{\Delta}_2+r_1r_2\ddot{\theta}_2) +2\sin{\Delta}(\dot{r}_1\dot{r}_2+r_1\ddot{r}_2-r_1r_2\dot{\theta}_2\dot{\Delta})\\ \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{\theta}_2} &= 2\dot{r}_1r_2\dot{\theta}_1\cos{\Delta} + 2r_1\dot{r}_2\dot{\theta}_1\cos{\Delta} + 2r_1r_2\ddot{\theta}_1\cos{\Delta} - 2r_1r_2\dot{\theta}_1\dot{\Delta}\sin{\Delta} - 2\ddot{r}_1r_2\sin{\Delta} - 2\dot{r}_1\dot{r}_2\sin{\Delta} - 2\dot{r}_1r_2\dot{\Delta}\cos{\Delta} \\ &=2\cos{\Delta}(\dot{r}_1r_2(\dot{\theta}_1-\dot{\Delta})+r_1\dot{r}_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)-2\sin{\Delta}(r_1r_2\dot{\theta}_1\dot{\Delta} + \ddot{r}_1r_2 + \dot{r}_1\dot{r}_2) \\ &=2\cos{\Delta}(\dot{r}_1r_2\dot{\Delta}_1+r_1\dot{r}_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)-2\sin{\Delta}(r_1r_2\dot{\theta}_1\dot{\Delta} + \ddot{r}_1r_2 + \dot{r}_1\dot{r}_2). \end{aligned}

Hence the negative functional derivative for r1r_1 is

δr1Δv2,1I2=ddtΔv2,1I2r˙1Δv2,1I2r1=2cosΔ(r¨2r2θ˙2Δ˙)2sinΔ(r˙2Δ˙2+r2θ¨2)(2r2θ˙1θ˙2cosΔ+2r˙2θ˙1sinΔ)=2cosΔ(r¨2r2θ˙2(Δ˙+θ˙1))2sinΔ(r˙2(Δ˙2+θ˙1)+r2θ¨2).\begin{aligned} \delta'_{r_1} |\Delta \vec{v}_{2,1}^I|^2 &= \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{r}_1} - \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial r_1} \\ &= 2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2\dot{\Delta}) - 2\sin{\Delta}(\dot{r}_2\dot{\Delta}_2+r_2\ddot{\theta}_2) - \left(2r_2\dot{\theta}_1\dot{\theta}_2\cos{\Delta} + 2\dot{r}_2\dot{\theta}_1\sin{\Delta}\right) \\ &= 2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2(\dot{\Delta}+\dot{\theta}_1)) - 2\sin{\Delta} (\dot{r}_2(\dot{\Delta}_2+\dot{\theta}_1)+r_2\ddot{\theta}_2). \end{aligned}

Where Δ˙+θ˙1=θ˙2θ˙1+θ˙1=θ˙2\dot{\Delta} + \dot{\theta}_1 = \dot{\theta}_2 - \dot{\theta}_1 + \dot{\theta}_1 = \dot{\theta}_2 and Δ˙2+θ˙1=2θ˙2θ˙1+θ˙1=2θ˙2\dot{\Delta}_2 + \dot{\theta}_1 = 2\dot{\theta}_2 - \dot{\theta}_1 + \dot{\theta}_1 = 2\dot{\theta}_2. (Confirmed with SymPy)

δr1Δv2,1I2=2cosΔ(r¨2r2θ˙22)2sinΔ(2r˙2θ˙2+r2θ¨2).\begin{aligned} \delta'_{r_1} |\Delta \vec{v}_{2,1}^I|^2 &= 2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2^2) - 2\sin{\Delta} (2\dot{r}_2\dot{\theta}_2+r_2\ddot{\theta}_2). \end{aligned}

As for r2r_2 (checked)

δr2Δv2,1I2=ddtΔv2,1I2r˙2Δv2,1I2r2=2cosΔ(r¨1+r1θ˙1Δ˙)+2sinΔ(r1θ¨1+r˙1Δ˙1)[2r1θ˙1θ˙2cosΔ2r˙1θ˙2sinΔ]=2cosΔ(r¨1+r1θ˙1(Δ˙θ˙2))+2sinΔ(r1θ¨1+r˙1(Δ˙1+θ˙2)).\begin{aligned} \delta'_{r_2} |\Delta \vec{v}_{2,1}^I|^2 &= \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{r}_2} - \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial r_2} \\ &= 2\cos{\Delta}(\ddot{r}_1 + r_1\dot{\theta}_1 \dot{\Delta}) + 2\sin{\Delta}(r_1\ddot{\theta}_1 + \dot{r}_1\dot{\Delta}_1) - \left[2r_1\dot{\theta}_1\dot{\theta}_2\cos{\Delta}-2\dot{r}_1\dot{\theta}_2\sin{\Delta}\right]\\ &= 2\cos{\Delta}(\ddot{r}_1 + r_1\dot{\theta}_1( \dot{\Delta}-\dot{\theta}_2))+2\sin{\Delta}(r_1\ddot{\theta}_1 + \dot{r}_1(\dot{\Delta}_1+\dot{\theta}_2)). \end{aligned}

Hence Δ˙θ˙2=θ˙2θ˙1θ˙2=θ˙1\dot{\Delta}-\dot{\theta}_2 = \dot{\theta}_2-\dot{\theta}_1-\dot{\theta}_2 = -\dot{\theta}_1 and Δ˙1+θ˙2=2θ˙1θ˙2+θ˙2=2θ˙1\dot{\Delta}_1 + \dot{\theta}_2 = 2\dot{\theta}_1 - \dot{\theta}_2 + \dot{\theta}_2 = 2\dot{\theta}_1.

δr2Δv2,1I2=2cosΔ(r¨1r1θ˙12)+2sinΔ(r1θ¨1+2r˙1θ˙1).\begin{aligned} \delta'_{r_2} |\Delta \vec{v}_{2,1}^I|^2 &= 2\cos{\Delta}(\ddot{r}_1 - r_1\dot{\theta}_1^2)+2\sin{\Delta}(r_1\ddot{\theta}_1 + 2\dot{r}_1\dot{\theta}_1). \end{aligned}

As for θ1\theta_1 (confirmed by SymPy)

δθ1Δv2,1I2=ddtΔv2,1I2θ˙1Δv2,1I2θ1=2cosΔ(r˙1r2θ˙2+r1r˙2Δ˙2+r1r2θ¨2)+2sinΔ(r˙1r˙2+r1r¨2r1r2θ˙2Δ˙)[2sinΔ(r˙1r˙2+r1r2θ˙1θ˙2)2cosΔ(r1r˙2θ˙1r˙1r2θ˙2)]=2cosΔ(r˙1r2(θ˙2θ˙2)+r1r˙2(Δ˙2+θ˙1)+r1r2θ¨2)+2sinΔ(r˙1r˙2r˙1r˙2+r1r¨2r1r2θ˙2(Δ˙+θ˙1))=2cosΔ(2r1r˙2θ˙2+r1r2θ¨2)+2sinΔ(r1r¨2r1r2θ˙22).\begin{aligned} \delta'_{\theta_1} |\Delta \vec{v}_{2,1}^I|^2 &= \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{\theta}_1} - \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \theta_1} \\ &= 2\cos{\Delta}(\dot{r}_1r_2\dot{\theta}_2 + r_1\dot{r}_2 \dot{\Delta}_2+r_1r_2\ddot{\theta}_2) +2\sin{\Delta}(\dot{r}_1\dot{r}_2+r_1\ddot{r}_2-r_1r_2\dot{\theta}_2\dot{\Delta}) - \left[2\sin{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) - 2\cos{\Delta}(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2)\right] \\ &= 2\cos{\Delta}(\dot{r}_1r_2(\dot{\theta}_2 - \dot{\theta}_2)+ r_1\dot{r}_2 (\dot{\Delta}_2+\dot{\theta}_1)+r_1r_2\ddot{\theta}_2) +2\sin{\Delta}(\dot{r}_1\dot{r}_2-\dot{r}_1\dot{r}_2+r_1\ddot{r}_2-r_1r_2\dot{\theta}_2(\dot{\Delta}+\dot{\theta}_1)) \\ &= 2\cos{\Delta}(2r_1\dot{r}_2\dot{\theta}_2+r_1r_2\ddot{\theta}_2) +2\sin{\Delta}(r_1\ddot{r}_2-r_1r_2\dot{\theta}_2^2). \end{aligned}

As for θ2\theta_2 (correct, checked with SymPy)

δθ2Δv2,1I2=ddtΔv2,1I2θ˙2Δv2,1I2θ2=2cosΔ(r˙1r2Δ˙1+r1r˙2θ˙1+r1r2θ¨1)2sinΔ(r1r2θ˙1Δ˙+r¨1r2+r˙1r˙2)[2sinΔ(r˙1r˙2+r1r2θ˙1θ˙2)+2cosΔ(r1r˙2θ˙1r˙1r2θ˙2)]=2cosΔ(r˙1r2(Δ˙1+θ˙2)+r1r˙2(θ˙1θ˙1)+r1r2θ¨1)+2sinΔ(r1r2θ˙1(θ˙2Δ˙)r¨1r2+r˙1r˙2r˙1r˙2)=2cosΔ(2r˙1r2θ˙1+r1r2θ¨1)+2sinΔ(r1r2θ˙1(θ˙2(θ˙2θ˙1))r¨1r2)=2cosΔ(2r˙1r2θ˙1+r1r2θ¨1)+2sinΔ(r1r2θ˙12r¨1r2).\begin{aligned} \delta'_{\theta_2} |\Delta \vec{v}_{2,1}^I|^2 &= \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{\theta}_2} - \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \theta_2} \\ &= 2\cos{\Delta}(\dot{r}_1r_2\dot{\Delta}_1+r_1\dot{r}_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)-2\sin{\Delta}(r_1r_2\dot{\theta}_1\dot{\Delta} + \ddot{r}_1r_2 + \dot{r}_1\dot{r}_2) - \left[-2\sin{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) + 2\cos{\Delta}(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2)\right] \\ &= 2\cos{\Delta}(\dot{r}_1r_2(\dot{\Delta}_1+\dot{\theta}_2)+r_1\dot{r}_2(\dot{\theta}_1-\dot{\theta}_1)+r_1r_2\ddot{\theta}_1)+2\sin{\Delta}(r_1r_2\dot{\theta}_1(\dot{\theta}_2-\dot{\Delta}) - \ddot{r}_1r_2 + \dot{r}_1\dot{r}_2-\dot{r}_1\dot{r}_2) \\ &= 2\cos{\Delta}(2\dot{r}_1r_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)+2\sin{\Delta}(r_1r_2\dot{\theta}_1(\dot{\theta}_2-(\dot{\theta}_2-\dot{\theta}_1))-\ddot{r}_1r_2) \\ &= 2\cos{\Delta}(2\dot{r}_1r_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)+2\sin{\Delta}(r_1r_2\dot{\theta}_1^2-\ddot{r}_1r_2). \end{aligned}

Euler-Lagrange equations with dissipation

r1r_1

It is important to note that δf(qi)δqi=fqi\dfrac{\delta' f(q_i)}{\delta' q_i} = -\dfrac{\partial f}{\partial q_i} and of course if a term does not depend on qiq_i or q˙i\dot{q}_i its functional derivative with respect to qiq_i is zero. Hence

δr1L=M12δr1v1b2+M22δr1v2bI2+μ22δr1Δv2,1I2+μ1gsinθ1+k1(r1l1)\begin{aligned} \delta'_{r_1} \mathcal{L} &= \dfrac{M_1}{2} \delta'_{r_1} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2} \delta'_{r_1}|\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}\delta'_{r_1} |\Delta \vec{v}_{2,1}^I|^2 + \mu_1 g\sin{\theta_1} + k_1(r_1-l_1) \end{aligned}

We have deliberately ignored the m2gr2sinθ2m_2gr_2\sin{\theta_2} and k2(r2l2)22-\dfrac{k_2(r_2-l_2)^2}{2} as they are independent of r1r_1.

δr1L=M12(2r¨12r1θ˙12)+M220+μ22(2cosΔ(r¨2r2θ˙2(Δ˙+θ˙1))2sinΔ(r˙2(Δ˙2+θ˙1)+r2θ¨2))+μ1gsinθ1+k1(r1l1)=M1(r¨1r1θ˙12)+μ2(cosΔ(r¨2r2θ˙2(Δ˙+θ˙1))sinΔ(r˙2(Δ˙2+θ˙1)+r2θ¨2))+μ1gsinθ1+k1(r1l1)=M1(r¨1r1θ˙12)+μ2(cosΔ(r¨2r2θ˙22)sinΔ(2r˙2θ˙2+r2θ¨2))+μ1gsinθ1+k1(r1l1).\begin{aligned} \delta'_{r_1} \mathcal{L} &= \dfrac{M_1}{2}(2\ddot{r}_1-2r_1\dot{\theta}_1^2) + \dfrac{M_2}{2} \cdot 0 + \dfrac{\mu_2}{2} \left(2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2(\dot{\Delta}+\dot{\theta}_1)) - 2\sin{\Delta} (\dot{r}_2(\dot{\Delta}_2+\dot{\theta}_1)+r_2\ddot{\theta}_2)\right) + \mu_1g\sin{\theta_1} + k_1(r_1-l_1) \\ &= M_1(\ddot{r}_1-r_1\dot{\theta}_1^2) + \mu_2 \left(\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2(\dot{\Delta}+\dot{\theta}_1)) - \sin{\Delta} (\dot{r}_2(\dot{\Delta}_2+\dot{\theta}_1)+r_2\ddot{\theta}_2)\right) + \mu_1g\sin{\theta_1} + k_1(r_1-l_1) \\ &= M_1(\ddot{r}_1-r_1\dot{\theta}_1^2) + \mu_2 \left(\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2^2) - \sin{\Delta} (2\dot{r}_2\dot{\theta}_2+r_2\ddot{\theta}_2)\right) + \mu_1g\sin{\theta_1} + k_1(r_1-l_1). \end{aligned}

The generalized dissipation force canonical to r1r_1 is hence

Qr1=(b1b+c1bv1b)v1br1br1(b1r+c1rv1r)v1rr1rr1(b2b+c2bv2b)v2br2br1(b2r+c2rv2r)v2rr2rr1=(b1b+c1bv1b)[r˙1cosθ1r1θ˙1sinθ1r˙1sinθ1+r1θ˙1cosθ1][cosθ1sinθ1](b1r+c1rv1r)12[r˙1cosθ1r1θ˙1sinθ1r˙1sinθ1+r1θ˙1cosθ1]12[cosθ1sinθ1](b2b+c2bv2b)[r˙1cosθ1r1θ˙1sinθ1+r˙2cosθ2r2θ˙2sinθ2r˙1sinθ1+r1θ˙1cosθ1+r˙2sinθ2+r2θ˙2cosθ2][cosθ1sinθ1](b2r+c2rv2r)[r˙1cosθ1r1θ˙1sinθ1+r˙2cosθ2r2θ˙2sinθ22r˙1sinθ1+r1θ˙1cosθ1+r˙2sinθ2+r2θ˙2cosθ22][cosθ1sinθ1]=(b1b+c1bv1b)[r˙1cos2θ1r1θ˙1sinθ1cosθ1+r˙1sin2θ1+r1θ˙1cosθ1sinθ1]14(b1r+c1rv1r)[r˙1cos2θ1r1θ˙1sinθ1cosθ1+r˙1sin2θ1+r1θ˙1cosθ1sinθ1](b2b+c2bv2b)[r˙1cos2θ1r1θ˙1sinθ1cosθ1+r˙2cosθ1cosθ2r2θ˙2cosθ1sinθ2+r˙1sin2θ1+r1θ˙1cosθ1sinθ1+r˙2sinθ1sinθ2+r2θ˙2sinθ1cosθ2](b2r+c2rv2r)[r˙1cos2θ1r1θ˙1sinθ1cosθ1+12[r˙2cosθ1cosθ2r2θ˙2cosθ1sinθ2]+r˙1sin2θ1+r1θ˙1cosθ1sinθ1+r˙2sinθ1sinθ2+r2θ˙2sinθ1cosθ22]=(b1b+c1bv1b)[r˙1(cos2θ1+sin2θ1)+r1θ˙1(sinθ1cosθ1+cosθ1sinθ1)]14(b1r+c1rv1r)[r˙1(cos2θ1+sin2θ1)+r1θ˙1(sinθ1cosθ1+cosθ1sinθ1)](b2b+c2bv2b)[r˙1(cos2θ1+sin2θ1)+r1θ˙1(sinθ1cosθ1+cosθ1sinθ1)+r˙2(cosθ1cosθ2+sinθ1sinθ2)+r2θ˙2(cosθ1sinθ2+sinθ1cosθ2)](b2r+c2rv2r)[r˙1(cos2θ1+sin2θ1)+r1θ˙1(sinθ1cosθ1+cosθ1sinθ1)+12[r˙2(cosθ1cosθ2+sinθ1sinθ2)+r2θ˙2(cosθ1sinθ2+sinθ1cosθ2)]]=(b1b+c1bv1b)r˙1r˙14(b1r+c1rv1r)(b2b+c2bv2b)[r˙1+r˙2cosΔr2θ˙2sinΔ](b2r+c2rv2r)[r˙1+r˙2cosΔr2θ˙2sinΔ2].\begin{aligned} Q_{r_1} &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\vec{v}_{1b}\cdot \dfrac{\partial \vec{r}_{1b}}{\partial r_{1}} -(b_{1r}+c_{1r}|\vec{v}_{1r}|)\vec{v}_{1r}\cdot \dfrac{\partial \vec{r}_{1r}}{\partial r_{1}} - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\vec{v}_{2b}\cdot \dfrac{\partial \vec{r}_{2b}}{\partial r_1} - (b_{2r}+c_{2r}|\vec{v}_{2r}|)\vec{v}_{2r}\cdot \dfrac{\partial \vec{r}_{2r}}{\partial r_1} \\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\begin{bmatrix} \dot{r}_1\cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1} \end{bmatrix} \cdot \begin{bmatrix} \cos{\theta_1} \\ \sin{\theta_1} \end{bmatrix} -(b_{1r}+c_{1r}|\vec{v}_{1r}|)\dfrac{1}{2}\begin{bmatrix} \dot{r}_1\cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1} \end{bmatrix} \cdot \dfrac{1}{2} \begin{bmatrix} \cos{\theta_1} \\ \sin{\theta_1} \end{bmatrix} - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2} \end{bmatrix} \cdot \begin{bmatrix} \cos{\theta_1} \\ \sin{\theta_1} \end{bmatrix}- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dfrac{\dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2}}{2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dfrac{\dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}}{2} \end{bmatrix} \cdot \begin{bmatrix} \cos{\theta_1} \\ \sin{\theta_1} \end{bmatrix} \\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\left[\dot{r}_1\cos^2{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_1} + \dot{r}_1\sin^2{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1}\sin{\theta_1}\right] \\ &- \dfrac{1}{4}(b_{1r}+c_{1r}|\vec{v}_{1r}|)\left[\dot{r}_1\cos^2{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_1} + \dot{r}_1\sin^2{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1}\sin{\theta_1}\right] \\ &- (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1\cos^2{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_1} + \dot{r}_2\cos{\theta_1}\cos{\theta_2}-r_2\dot{\theta}_2\cos{\theta_1}\sin{\theta_2} \right.\\ &\left.+ \dot{r}_1\sin^2{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1}\sin{\theta_1} + \dot{r}_2\sin{\theta_1}\sin{\theta_2} + r_2\dot{\theta}_2\sin{\theta_1}\cos{\theta_2} \right] \\ &- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1\cos^2{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_1} + \dfrac{1}{2}\left[\dot{r}_2\cos{\theta_1}\cos{\theta_2}-r_2\dot{\theta}_2\cos{\theta_1}\sin{\theta_2}\right]\right.\\ &\left.+ \dot{r}_1\sin^2{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1}\sin{\theta_1} + \dfrac{\dot{r}_2\sin{\theta_1}\sin{\theta_2} + r_2\dot{\theta}_2\sin{\theta_1}\cos{\theta_2}}{2} \right] \\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\left[\dot{r}_1(\cos^2{\theta_1}+\sin^2{\theta_1}) + r_1\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_1} + \cos{\theta_1}\sin{\theta_1})\right] \\ &- \dfrac{1}{4}(b_{1r}+c_{1r}|\vec{v}_{1r}|)\left[\dot{r}_1(\cos^2{\theta_1}+\sin^2{\theta_1}) + r_1\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_1} + \cos{\theta_1}\sin{\theta_1})\right] \\ &- (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1(\cos^2{\theta_1}+\sin^2{\theta_1}) + r_1\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_1} + \cos{\theta_1}\sin{\theta_1}) \right.\\ &\left.+ \dot{r}_2(\cos{\theta_1}\cos{\theta_2}+\sin{\theta_1}\sin{\theta_2})+r_2\dot{\theta}_2(-\cos{\theta_1}\sin{\theta_2} + \sin{\theta_1}\cos{\theta_2}) \right] \\ &- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1(\cos^2{\theta_1}+\sin^2{\theta_1}) + r_1\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_1} + \cos{\theta_1}\sin{\theta_1})\right.\\ &\left.+ \dfrac{1}{2}\left[\dot{r}_2(\cos{\theta_1}\cos{\theta_2}+\sin{\theta_1}\sin{\theta_2})+r_2\dot{\theta}_2(-\cos{\theta_1}\sin{\theta_2}+\sin{\theta_1}\cos{\theta_2})\right]\right]\\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\dot{r}_1 - \dfrac{\dot{r}_1}{4}(b_{1r}+c_{1r}|\vec{v}_{1r}|) - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1 + \dot{r}_2\cos{\Delta}-r_2\dot{\theta}_2\sin{\Delta} \right] \\ &- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1+ \dfrac{\dot{r}_2\cos{\Delta}-r_2\dot{\theta}_2\sin{\Delta}}{2}\right]. \end{aligned}

Hence the Euler-Lagrange equation for r1r_1 with dissipative forces is

M1(r¨1r1θ˙12)+μ2(cosΔ(r¨2r2θ˙22)sinΔ(2r˙2θ˙2+r2θ¨2))+μ1gsinθ1+k1(r1l1)=Qr1.\begin{aligned} M_1(\ddot{r}_1-r_1\dot{\theta}_1^2) + \mu_2 \left(\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2^2) - \sin{\Delta} (2\dot{r}_2\dot{\theta}_2+r_2\ddot{\theta}_2)\right) + \mu_1g\sin{\theta_1} + k_1(r_1-l_1) &= Q_{r_1}. \end{aligned}

So, this line of our matrix equation for q¨\mathbf{\ddot{q}} will be

[M1μ2cosΔ0μ2r2sinΔ][r¨1r¨2θ¨1θ¨2]=[M1r12θ˙12+μ2r2θ˙22cosΔ+2μ2r˙2θ˙2sinΔμ1gsinθ1k1(r1l1)+Qr1].\begin{aligned} \begin{bmatrix} M_1 & \mu_2 \cos{\Delta} & 0 & -\mu_2r_2 \sin{\Delta} \end{bmatrix} \begin{bmatrix} \ddot{r}_1 \\ \ddot{r}_2 \\ \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} &= \begin{bmatrix} M_1r_1^2 \dot{\theta}_1^2 + \mu_2 r_2 \dot{\theta}_2^2\cos{\Delta} + 2\mu_2 \dot{r}_2 \dot{\theta}_2\sin{\Delta} - \mu_1g\sin{\theta_1} - k_1(r_1-l_1) + Q_{r_1} \end{bmatrix}. \end{aligned}

r2r_2

As for r2r_2

δr2L=M12δr2v1b2+M22δr2v2bI2+μ22(δr2Δv2,1I2+2gsinθ2)+k2(r2l2)=M22(2(r¨2r2θ˙22))+μ22(2cosΔ(r¨1r1θ˙12)+2sinΔ(r1θ¨1+2r˙1θ˙1)+2gsinθ2)+k2(r2l2)=M2(r¨2r2θ˙22)+μ2(cosΔ(r¨1r1θ˙12)+sinΔ(r1θ¨1+2r˙1θ˙1)+gsinθ2)+k2(r2l2)=M2(r¨2r2θ˙22)+μ2(cosΔ(r¨1r1θ˙12)+sinΔ(r1θ¨1+2r˙1θ˙1)+gsinθ2)+k2(r2l2).\begin{aligned} \delta'_{r_2} \mathcal{L} &= \dfrac{M_1}{2} \delta'_{r_2} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2} \delta'_{r_2} |\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}(\delta'_{r_2} |\Delta \vec{v}_{2,1}^I|^2+2g\sin{\theta_2}) + k_2(r_2-l_2) \\ &= \dfrac{M_2}{2} (2(\ddot{r}_2 - r_2\dot{\theta}_2^2)) + \dfrac{\mu_2}{2}(2\cos{\Delta}(\ddot{r}_1 - r_1\dot{\theta}_1^2)+2\sin{\Delta}(r_1\ddot{\theta}_1 + 2\dot{r}_1\dot{\theta}_1)+2g\sin{\theta_2}) + k_2(r_2-l_2) \\ &= M_2 (\ddot{r}_2 - r_2\dot{\theta}_2^2) + \mu_2 (\cos{\Delta}(\ddot{r}_1 - r_1\dot{\theta}_1^2)+\sin{\Delta}(r_1\ddot{\theta}_1 + 2\dot{r}_1\dot{\theta}_1)+g\sin{\theta_2}) + k_2(r_2-l_2) \\ &= M_2 (\ddot{r}_2 - r_2\dot{\theta}_2^2) + \mu_2 (\cos{\Delta}(\ddot{r}_1 - r_1\dot{\theta}_1^2)+\sin{\Delta}(r_1\ddot{\theta}_1 + 2\dot{r}_1\dot{\theta}_1)+g\sin{\theta_2}) + k_2(r_2-l_2). \end{aligned}

Generalized dissipative forces

Qr2=(b1b+c1bv1b)v1br1br2(b1r+c1rv1r)v1rr1rr2(b2b+c2bv2b)v2br2br2(b2r+c2rv2r)v2rr2rr2=(b1b+c1bv1b)[r˙1cosθ1r1θ˙1sinθ1r˙1sinθ1+r1θ˙1cosθ1]0(b1r+c1rv1r)12[r˙1cosθ1r1θ˙1sinθ1r˙1sinθ1+r1θ˙1cosθ1]0(b2b+c2bv2b)[r˙1cosθ1r1θ˙1sinθ1+r˙2cosθ2r2θ˙2sinθ2r˙1sinθ1+r1θ˙1cosθ1+r˙2sinθ2+r2θ˙2cosθ2][cosθ2sinθ2](b2r+c2rv2r)[r˙1cosθ1r1θ˙1sinθ1+r˙2cosθ2r2θ˙2sinθ22r˙1sinθ1+r1θ˙1cosθ1+r˙2sinθ2+r2θ˙2cosθ22]12[cosθ2sinθ2]=(b2b+c2bv2b)[r˙1cosθ1cosθ2r1θ˙1sinθ1cosθ2+r˙2cos2θ2r2θ˙2sinθ2cosθ2+r˙1sinθ1sinθ2+r1θ˙1cosθ1sinθ2+r˙2sin2θ2+r2θ˙2cosθ2sinθ2]12(b2r+c2rv2r)[r˙1cosθ1cosθ2r1θ˙1sinθ1cosθ2+r˙2cos2θ2r2θ˙2sinθ2cosθ22+r˙1sinθ1sinθ2+r1θ˙1cosθ1sinθ2+r˙2sin2θ2+r2θ˙2cosθ2sinθ22]=(b2b+c2bv2b)[r˙1(cosθ1cosθ2+sinθ1sinθ2)+r1θ˙1(sinθ1cosθ2+cosθ1sinθ2)+r˙2(cos2θ2+sin2θ2)+r2θ˙2(sinθ2cosθ2+cosθ2sinθ2)]12(b2r+c2rv2r)[r˙1(cosθ1cosθ2+sinθ1sinθ2)+r1θ˙1(sinθ1cosθ2+cosθ1sinθ2)+r˙2(cos2θ2+sin2θ2)+r2θ˙2(sinθ2cosθ2+cosθ2sinθ2)2]=(b2b+c2bv2b)[r˙1cos(θ2θ1)+r1θ˙1sin(θ2θ1)+r˙2]12(b2r+c2rv2r)[r˙1cosΔ+r1θ˙1sinΔ+r˙22]=(b2b+c2bv2b)[r˙1cosΔ+r1θ˙1sinΔ+r˙2]12(b2r+c2rv2r)[r˙1cosΔ+r1θ˙1sinΔ+r˙22].\begin{aligned} Q_{r_2} &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\vec{v}_{1b} \cdot \dfrac{\partial \vec{r}_{1b}}{\partial r_2}-(b_{1r}+c_{1r}|\vec{v}_{1r}|)\vec{v}_{1r} \cdot \dfrac{\partial \vec{r}_{1r}}{\partial r_2} - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\vec{v}_{2b} \cdot \dfrac{\partial \vec{r}_{2b}}{\partial r_{2}} - (b_{2r}+c_{2r}|\vec{v}_{2r}|)\vec{v}_{2r} \cdot \dfrac{\partial \vec{r}_{2r}}{\partial r_{2}} \\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\begin{bmatrix} \dot{r}_1\cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1} \end{bmatrix} \cdot \vec{0} -(b_{1r}+c_{1r}|\vec{v}_{1r}|)\dfrac{1}{2}\begin{bmatrix} \dot{r}_1\cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1} \end{bmatrix} \cdot \vec{0} - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2} \end{bmatrix} \cdot \begin{bmatrix} \cos{\theta_2} \\ \sin{\theta_2} \end{bmatrix} - (b_{2r}+c_{2r}|\vec{v}_{2r}|)\begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dfrac{\dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2}}{2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dfrac{\dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}}{2} \end{bmatrix} \cdot \dfrac{1}{2}\begin{bmatrix} \cos{\theta_2} \\ \sin{\theta_2} \end{bmatrix} \\ &= - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1\cos{\theta_1}\cos{\theta_2} - r_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_2} + \dot{r}_2\cos^2{\theta_2}-r_2\dot{\theta}_2\sin{\theta_2}\cos{\theta_2} + \dot{r}_1\sin{\theta_1}\sin{\theta_2} + r_1\dot{\theta}_1\cos{\theta_1}\sin{\theta_2} + \dot{r}_2\sin^2{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}\sin{\theta_2}\right] - \dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1\cos{\theta_1}\cos{\theta_2} - r_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_2} + \dfrac{\dot{r}_2\cos^2{\theta_2}-r_2\dot{\theta}_2\sin{\theta_2}\cos{\theta_2}}{2} + \dot{r}_1\sin{\theta_1}\sin{\theta_2} + r_1\dot{\theta}_1\cos{\theta_1}\sin{\theta_2} + \dfrac{\dot{r}_2\sin^2{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}\sin{\theta_2}}{2}\right] \\ &= - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1(\cos{\theta_1}\cos{\theta_2}+\sin{\theta_1}\sin{\theta_2}) + r_1\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_2} + \cos{\theta_1}\sin{\theta_2}) + \dot{r}_2(\cos^2{\theta_2} + \sin^2{\theta_2})+r_2\dot{\theta}_2(-\sin{\theta_2}\cos{\theta_2} + \cos{\theta_2}\sin{\theta_2})\right] - \dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1(\cos{\theta_1}\cos{\theta_2}+\sin{\theta_1}\sin{\theta_2}) + r_1\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_2} + \cos{\theta_1}\sin{\theta_2}) + \dfrac{\dot{r}_2(\cos^2{\theta_2} + \sin^2{\theta_2})+r_2\dot{\theta}_2(-\sin{\theta_2}\cos{\theta_2} + \cos{\theta_2}\sin{\theta_2})}{2}\right] \\ &= - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1\cos{(\theta_2-\theta_1)} + r_1\dot{\theta}_1\sin{(\theta_2-\theta_1)} + \dot{r}_2\right] - \dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1\cos{\Delta} + r_1\dot{\theta}_1\sin{\Delta} + \dfrac{\dot{r}_2}{2}\right]\\ &= - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1\cos{\Delta} + r_1\dot{\theta}_1\sin{\Delta} + \dot{r}_2\right]- \dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1\cos{\Delta} + r_1\dot{\theta}_1\sin{\Delta} + \dfrac{\dot{r}_2}{2}\right]. \end{aligned}

Hence the Euler-Lagrange equation for r2r_2 with dissipative forces is

M2(r¨2r2θ˙22)+μ2(cosΔ(r¨1r1θ˙12)+sinΔ(r1θ¨1+2r˙1θ˙1)+gsinθ2)+k2(r2l2)=Qr2.\begin{aligned} M_2 (\ddot{r}_2 - r_2\dot{\theta}_2^2) + \mu_2 (\cos{\Delta}(\ddot{r}_1 - r_1\dot{\theta}_1^2)+\sin{\Delta}(r_1\ddot{\theta}_1 + 2\dot{r}_1\dot{\theta}_1)+g\sin{\theta_2}) + k_2(r_2-l_2) &= Q_{r_2}. \end{aligned}

Or, in matrix form

[μ2cosΔM2μ2r1sinΔ0][r¨1r¨2θ¨1θ¨2]=[M2r2θ˙22+μ2(r1θ˙12cosΔ2r˙1θ˙1sinΔgsinθ2)k2(r2l2)+Qr2].\begin{aligned} \begin{bmatrix} \mu_2 \cos{\Delta} & M_2 & \mu_2 r_1\sin{\Delta} & 0 \end{bmatrix} \begin{bmatrix} \ddot{r}_1 \\ \ddot{r}_2 \\ \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} &= \begin{bmatrix} M_2r_2\dot{\theta}_2^2 + \mu_2 (r_1\dot{\theta}_1^2\cos{\Delta}-2\dot{r}_1\dot{\theta}_1\sin{\Delta} - g\sin{\theta_2}) - k_2(r_2-l_2) + Q_{r_2} \end{bmatrix}. \end{aligned}

θ1\theta_1

As for θ1\theta_1

δθ1L=M12δθ1v1b2+M22δθ1v2bI2+μ22(δθ1Δv2,1I2)+μ1gr1cosθ1=M12(2r12θ¨1+4r1r˙1θ˙1)+μ22(2cosΔ(2r1r˙2θ˙2+r1r2θ¨2)+2sinΔ(r1r¨2r1r2θ˙22))+μ1gr1cosθ1=M1(r12θ¨1+2r1r˙1θ˙1)+μ2(cosΔ(2r1r˙2θ˙2+r1r2θ¨2)+sinΔ(r1r¨2r1r2θ˙22))+μ1gr1cosθ1.\begin{aligned} \delta'_{\theta_1} \mathcal{L} &= \dfrac{M_1}{2} \delta'_{\theta_1} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2} \delta'_{\theta_1} |\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}(\delta'_{\theta_1}|\Delta \vec{v}_{2,1}^I|^2) + \mu_1 gr_1 \cos{\theta_1} \\ &= \dfrac{M_1}{2} (2r_1^2 \ddot{\theta}_1 + 4r_1\dot{r}_1\dot{\theta}_1) + \dfrac{\mu_2}{2}(2\cos{\Delta}(2r_1\dot{r}_2\dot{\theta}_2+r_1r_2\ddot{\theta}_2) +2\sin{\Delta}(r_1\ddot{r}_2-r_1r_2\dot{\theta}_2^2)) + \mu_1 gr_1 \cos{\theta_1} \\ &= M_1 (r_1^2 \ddot{\theta}_1 + 2r_1\dot{r}_1\dot{\theta}_1) + \mu_2(\cos{\Delta}(2r_1\dot{r}_2\dot{\theta}_2+r_1r_2\ddot{\theta}_2) +\sin{\Delta}(r_1\ddot{r}_2-r_1r_2\dot{\theta}_2^2)) + \mu_1 gr_1 \cos{\theta_1}. \end{aligned}

Generalized dissipative force

Qθ1=(b1b+c1bv1b)v1br1bθ1(b1r+c1rv1r)v1rr1rθ1(b2b+c2bv2b)v2br2bθ1(b2r+c2rv2r)v2rr2rθ1=(b1b+c1bv1b)[r˙1cosθ1r1θ˙1sinθ1r˙1sinθ1+r1θ˙1cosθ1]r1[sinθ1cosθ1]14(b1r+c1rv1r)[r˙1cosθ1r1θ˙1sinθ1r˙1sinθ1+r1θ˙1cosθ1]r1[sinθ1cosθ1](b2b+c2bv2b)[r˙1cosθ1r1θ˙1sinθ1+r˙2cosθ2r2θ˙2sinθ2r˙1sinθ1+r1θ˙1cosθ1+r˙2sinθ2+r2θ˙2cosθ2]r1[sinθ1cosθ1](b2r+c2rv2r)[r˙1cosθ1r1θ˙1sinθ1+r˙2cosθ2r2θ˙2sinθ22r˙1sinθ1+r1θ˙1cosθ1+r˙2sinθ2+r2θ˙2cosθ22]r1[sinθ1cosθ1]=(b1b+c1bv1b)[r1r˙1cosθ1sinθ1+r12θ˙1sin2θ1+r1r˙1sinθ1cosθ1+r12θ˙1cos2θ1]14(b1r+c1rv1r)[r1r˙1cosθ1sinθ1+r12θ˙1sin2θ1+r1r˙1sinθ1cosθ1+r12θ˙1cos2θ1](b2b+c2bv2b)[r1r˙1cosθ1sinθ1+r12θ1˙sin2θ1r1r˙2sinθ1cosθ2+r1r2θ˙2sinθ1sinθ2+r1r˙1cosθ1sinθ1+r12θ˙1cos2θ1+r1r˙2cosθ1sinθ2+r1r2θ˙2cosθ1cosθ2](b2r+c2rv2r)[r1r˙1cosθ1sinθ1+r12θ1˙sin2θ1r1r˙2sinθ1cosθ2+r1r2θ˙2sinθ1sinθ22+r1r˙1cosθ1sinθ1+r12θ˙1cos2θ1+r1r˙2cosθ1sinθ2+r1r2θ˙2cosθ1cosθ22]=(b1b+c1bv1b)[r1r˙1(cosθ1sinθ1+sinθ1cosθ1)+r12θ˙1(sin2θ1+cos2θ1)](b2b+c2bv2b)[r1r˙1(cosθ1sinθ1+cosθ1sinθ1)+r12θ1˙(sin2θ1+cos2θ1)+r1r˙2(sinθ1cosθ2+cosθ1sinθ2)+r1r2θ˙2(sinθ1sinθ2+cosθ1cosθ2)]=(b1b+c1bv1b)r12θ˙114(b1r+c1rv1r)r12θ˙1(b2b+c2bv2b)[r12θ1˙+r1r˙2sinΔ+r1r2θ˙2cosΔ](b2r+c2rv2r)[r12θ1˙+r1r˙2sinΔ+r1r2θ˙2cosΔ2].\begin{aligned} Q_{\theta_1} &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\vec{v}_{1b} \cdot \dfrac{\partial \vec{r}_{1b}}{\partial \theta_1} -(b_{1r}+c_{1r}|\vec{v}_{1r}|)\vec{v}_{1r} \cdot \dfrac{\partial \vec{r}_{1r}}{\partial \theta_1} - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\vec{v}_{2b} \cdot \dfrac{\partial \vec{r}_{2b}}{\partial \theta_1}- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\vec{v}_{2r} \cdot \dfrac{\partial \vec{r}_{2r}}{\partial \theta_1} \\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\begin{bmatrix} \dot{r}_1\cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta}_1 \end{bmatrix} \cdot r_1\begin{bmatrix} -\sin{\theta_1} \\ \cos{\theta_1} \end{bmatrix} -\dfrac{1}{4}(b_{1r}+c_{1r}|\vec{v}_{1r}|)\begin{bmatrix} \dot{r}_1\cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta}_1 \end{bmatrix} \cdot r_1\begin{bmatrix} -\sin{\theta_1} \\ \cos{\theta_1} \end{bmatrix} \\ &- (b_{2b}+c_{2b}|\vec{v}_{2b}|) \begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2} \end{bmatrix} \cdot r_1\begin{bmatrix} -\sin{\theta_1} \\ \cos{\theta_1} \end{bmatrix} \\ &- (b_{2r}+c_{2r}|\vec{v}_{2r}|) \begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dfrac{\dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2}}{2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dfrac{\dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}}{2} \end{bmatrix} \cdot r_1\begin{bmatrix} -\sin{\theta_1} \\ \cos{\theta_1} \end{bmatrix} &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\left[-r_1\dot{r}_1\cos{\theta_1}\sin{\theta_1}+r_1^2\dot{\theta}_1\sin^2{\theta_1} + r_1\dot{r}_1\sin{\theta_1}\cos{\theta_1}+r_1^2\dot{\theta}_1\cos^2{\theta_1}\right] \\ &-\dfrac{1}{4}(b_{1r}+c_{1r}|\vec{v}_{1r}|)\left[-r_1\dot{r}_1\cos{\theta_1}\sin{\theta_1}+r_1^2\dot{\theta}_1\sin^2{\theta_1} + r_1\dot{r}_1\sin{\theta_1}\cos{\theta_1}+r_1^2\dot{\theta}_1\cos^2{\theta_1}\right] \\ &- (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[-r_1\dot{r}_1\cos{\theta_1}\sin{\theta_1} + r_1^2\dot{\theta_1}\sin^2{\theta_1} -r_1\dot{r}_2\sin{\theta_1}\cos{\theta_2}+r_1r_2\dot{\theta}_2\sin{\theta_1}\sin{\theta_2} \right.\\ &\left.+r_1\dot{r}_1\cos{\theta_1}\sin{\theta_1}+r_1^2\dot{\theta}_1\cos^2{\theta_1} + r_1\dot{r}_2\cos{\theta_1}\sin{\theta_2}+r_1r_2\dot{\theta}_2\cos{\theta_1}\cos{\theta_2}\right]\\ &- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[-r_1\dot{r}_1\cos{\theta_1}\sin{\theta_1} + r_1^2\dot{\theta_1}\sin^2{\theta_1} -\dfrac{r_1\dot{r}_2\sin{\theta_1}\cos{\theta_2}+r_1r_2\dot{\theta}_2\sin{\theta_1}\sin{\theta_2}}{2} \right.\\ &\left.+r_1\dot{r}_1\cos{\theta_1}\sin{\theta_1}+r_1^2\dot{\theta}_1\cos^2{\theta_1} + \dfrac{r_1\dot{r}_2\cos{\theta_1}\sin{\theta_2}+r_1r_2\dot{\theta}_2\cos{\theta_1}\cos{\theta_2}}{2}\right] &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\left[r_1\dot{r}_1(-\cos{\theta_1}\sin{\theta_1}+\sin{\theta_1}\cos{\theta_1}) + r_1^2\dot{\theta}_1(\sin^2{\theta_1} +\cos^2{\theta_1})\right] - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[r_1\dot{r}_1(-\cos{\theta_1}\sin{\theta_1} + \cos{\theta_1}\sin{\theta_1}) +r_1^2\dot{\theta_1}(\sin^2{\theta_1}+\cos^2{\theta_1})\right.\\ &\left.+r_1\dot{r}_2(-\sin{\theta_1}\cos{\theta_2}+\cos{\theta_1}\sin{\theta_2})+r_1r_2\dot{\theta}_2(\sin{\theta_1}\sin{\theta_2}+\cos{\theta_1}\cos{\theta_2})\right] \\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)r_1^2\dot{\theta}_1 -\dfrac{1}{4}(b_{1r}+c_{1r}|\vec{v}_{1r}|)r_1^2\dot{\theta}_1 - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[ r_1^2\dot{\theta_1}+r_1\dot{r}_2\sin{\Delta}+r_1r_2\dot{\theta}_2\cos{\Delta}\right] \\ &- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[ r_1^2\dot{\theta_1}+\dfrac{r_1\dot{r}_2\sin{\Delta}+r_1r_2\dot{\theta}_2\cos{\Delta}}{2}\right]. \end{aligned}

Hence Equation (1) is

M1(r12θ¨1+2r1r˙1θ˙1)+μ2(cosΔ(2r1r˙2θ˙2+r1r2θ¨2)+sinΔ(r1r¨2r1r2θ˙22))+μ1gr1cosθ1=Qθ1.\begin{aligned} M_1 (r_1^2 \ddot{\theta}_1 + 2r_1\dot{r}_1\dot{\theta}_1) + \mu_2(\cos{\Delta}(2r_1\dot{r}_2\dot{\theta}_2+r_1r_2\ddot{\theta}_2) +\sin{\Delta}(r_1\ddot{r}_2-r_1r_2\dot{\theta}_2^2)) + \mu_1 gr_1 \cos{\theta_1} &= Q_{\theta_1}. \end{aligned}

Hence the corresponding line of our matrix equation is

[0μ2r1sinΔM1r12μ2r1r2cosΔ][r¨1r¨2θ¨1θ¨2]=[2M1r1r˙1θ˙1+μ2(r1r2θ˙22sinΔ2r1r˙2θ˙2cosΔ)μ1gr1cosθ1+Qθ1].\begin{aligned} \begin{bmatrix} 0 & \mu_2 r_1\sin{\Delta} & M_1r_1^2 & \mu_2 r_1r_2\cos{\Delta} \end{bmatrix} \begin{bmatrix} \ddot{r}_1 \\ \ddot{r}_2 \\ \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} &= \begin{bmatrix} -2M_1r_1\dot{r}_1 \dot{\theta}_1 + \mu_2(r_1r_2\dot{\theta}_2^2 \sin{\Delta} -2r_1\dot{r}_2 \dot{\theta}_2\cos{\Delta}) - \mu_1 gr_1\cos{\theta_1} + Q_{\theta_1} \end{bmatrix}. \end{aligned}

θ2\theta_2

As for θ2\theta_2

δθ2L=M12δθ2v1b2+M22δθ2v2bI2+μ22(δθ2Δv2,1I2+2gr2cosθ2)=M22(2r22θ¨2+4r2r˙2θ˙2)+μ22(2cosΔ(2r˙1r2θ˙1+r1r2θ¨1)+2sinΔ(r1r2θ˙12r¨1r2)+2gr2cosθ2)=M2(r22θ¨2+2r2r˙2θ˙2)+μ2(cosΔ(2r˙1r2θ˙1+r1r2θ¨1)+sinΔ(r1r2θ˙12r¨1r2)+gr2cosθ2).\begin{aligned} \delta'_{\theta_2} \mathcal{L} &= \dfrac{M_1}{2} \delta'_{\theta_2} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2} \delta'_{\theta_2} |\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}(\delta'_{\theta_2} |\Delta \vec{v}_{2,1}^I|^2+2gr_2\cos{\theta_2}) \\ &= \dfrac{M_2}{2}(2r_2^2 \ddot{\theta}_2 + 4r_2 \dot{r}_2 \dot{\theta}_2) + \dfrac{\mu_2}{2}\left(2\cos{\Delta}(2\dot{r}_1r_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)+2\sin{\Delta}(r_1r_2\dot{\theta}_1^2-\ddot{r}_1r_2)+2gr_2\cos{\theta_2}\right) \\ &= M_2(r_2^2 \ddot{\theta}_2 + 2r_2 \dot{r}_2 \dot{\theta}_2) + \mu_2 (\cos{\Delta}(2\dot{r}_1r_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)+\sin{\Delta}(r_1r_2\dot{\theta}_1^2-\ddot{r}_1r_2)+gr_2\cos{\theta_2}). \end{aligned}
Qθ2=(b1b+c1bv1b)v1br1bθ2(b1r+c1rv1r)v1rr1rθ2(b2b+c2bv2b)v2br2bθ2(b2r+c2rv2r)v2rr2rθ2=(b2b+c2bv2b)[r˙1cosθ1r1θ˙1sinθ1+r˙2cosθ2r2θ˙2sinθ2r˙1sinθ1+r1θ˙1cosθ1+r˙2sinθ2+r2θ˙2cosθ2]r2[sinθ2cosθ2](b2r+c2rv2r)[r˙1cosθ1r1θ˙1sinθ1+r˙2cosθ2r2θ˙2sinθ22r˙1sinθ1+r1θ˙1cosθ1+r˙2sinθ2+r2θ˙2cosθ22]r22[sinθ2cosθ2]=(b2b+c2bv2b)[r˙1r2cosθ1sinθ2+r1r2θ˙1sinθ1sinθ2r2r˙2cosθ2sinθ2+r22θ˙2sin2θ2+r˙1r2sinθ1cosθ2+r1r2θ˙1cosθ1cosθ2+r2r˙2sinθ2cosθ2+r22θ˙2cos2θ2]12(b2r+c2rv2r)[r˙1r2cosθ1sinθ2+r1r2θ˙1sinθ1sinθ2r2r˙2cosθ2sinθ2+r22θ˙2sin2θ22+r˙1r2sinθ1cosθ2+r1r2θ˙1cosθ1cosθ2+r2r˙2sinθ2cosθ2+r22θ˙2cos2θ22]=(b2b+c2bv2b)[r˙1r2(cosθ1sinθ2+sinθ1cosθ2)+r1r2θ˙1(sinθ1sinθ2+cosθ1cosθ2)+r2r˙2(cosθ2sinθ2+sinθ2cosθ2)+r22θ˙2(sin2θ2+cos2θ2)]12(b2r+c2rv2r)[r˙1r2(cosθ1sinθ2+sinθ1cosθ2)+r1r2θ˙1(sinθ1sinθ2+cosθ1cosθ2)+r2r˙2(cosθ2sinθ2+sinθ2cosθ2)+r22θ˙2(sin2θ2+cos2θ2)2]=(b2b+c2bv2b)[r22θ˙2r˙1r2sinΔ+r1r2θ˙1cosΔ]12(b2r+c2rv2r)[r22θ˙22r˙1r2sinΔ+r1r2θ˙1cosΔ].\begin{aligned} Q_{\theta_2} &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\vec{v}_{1b} \cdot \dfrac{\partial \vec{r}_{1b}}{\partial \theta_2}-(b_{1r}+c_{1r}|\vec{v}_{1r}|)\vec{v}_{1r} \cdot \dfrac{\partial \vec{r}_{1r}}{\partial \theta_2} - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\vec{v}_{2b}\cdot \dfrac{\partial \vec{r}_{2b}}{\partial \theta_2} -(b_{2r}+c_{2r}|\vec{v}_{2r}|)\vec{v}_{2r}\cdot \dfrac{\partial \vec{r}_{2r}}{\partial \theta_2} \\ &= -(b_{2b}+c_{2b}|\vec{v}_{2b}|)\begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2} \end{bmatrix} \cdot r_2\begin{bmatrix} -\sin{\theta_2}\\ \cos{\theta_2} \end{bmatrix} -(b_{2r}+c_{2r}|\vec{v}_{2r}|)\begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dfrac{\dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2}}{2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dfrac{\dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}}{2} \end{bmatrix} \cdot \dfrac{r_2}{2}\begin{bmatrix} -\sin{\theta_2}\\ \cos{\theta_2} \end{bmatrix} \\ &= -(b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[-\dot{r}_1r_2\cos{\theta}_1\sin{\theta_2} + r_1r_2\dot{\theta}_1\sin{\theta_1}\sin{\theta_2} - r_2\dot{r}_2\cos{\theta_2}\sin{\theta_2} + r_2^2\dot{\theta}_2\sin^2{\theta_2} + \dot{r}_1r_2\sin{\theta_1}\cos{\theta_2} + r_1r_2\dot{\theta}_1\cos{\theta_1}\cos{\theta_2} + r_2\dot{r}_2\sin{\theta_2}\cos{\theta_2} + r_2^2\dot{\theta}_2\cos^2{\theta_2}\right]\\ &-\dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[-\dot{r}_1r_2\cos{\theta}_1\sin{\theta_2} + r_1r_2\dot{\theta}_1\sin{\theta_1}\sin{\theta_2} - \dfrac{r_2\dot{r}_2\cos{\theta_2}\sin{\theta_2} + r_2^2\dot{\theta}_2\sin^2{\theta_2}}{2} + \dot{r}_1r_2\sin{\theta_1}\cos{\theta_2} + r_1r_2\dot{\theta}_1\cos{\theta_1}\cos{\theta_2} + \dfrac{r_2\dot{r}_2\sin{\theta_2}\cos{\theta_2} + r_2^2\dot{\theta}_2\cos^2{\theta_2}}{2}\right]\\ &= -(b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1r_2(-\cos{\theta}_1\sin{\theta_2} + \sin{\theta_1}\cos{\theta_2}) + r_1r_2\dot{\theta}_1(\sin{\theta_1}\sin{\theta_2}+\cos{\theta_1}\cos{\theta_2}) + r_2\dot{r}_2(-\cos{\theta_2}\sin{\theta_2} + \sin{\theta_2}\cos{\theta_2}) + r_2^2\dot{\theta}_2(\sin^2{\theta_2} +\cos^2{\theta_2})\right]\\ &-\dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1r_2(-\cos{\theta}_1\sin{\theta_2} + \sin{\theta_1}\cos{\theta_2}) + r_1r_2\dot{\theta}_1(\sin{\theta_1}\sin{\theta_2}+\cos{\theta_1}\cos{\theta_2}) + \dfrac{r_2\dot{r}_2(-\cos{\theta_2}\sin{\theta_2} + \sin{\theta_2}\cos{\theta_2}) + r_2^2\dot{\theta}_2(\sin^2{\theta_2} +\cos^2{\theta_2})}{2}\right]\\ &= -(b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[ r_2^2\dot{\theta}_2-\dot{r}_1r_2\sin{\Delta} + r_1r_2\dot{\theta}_1\cos{\Delta}\right]-\dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dfrac{r_2^2\dot{\theta}_2}{2}-\dot{r}_1r_2\sin{\Delta} + r_1r_2\dot{\theta}_1\cos{\Delta}\right].\\ \end{aligned}

Hence Equation (1) for θ2\theta_2 is

M2(r22θ¨2+2r2r˙2θ˙2)+μ2(cosΔ(2r˙1r2θ˙1+r1r2θ¨1)+sinΔ(r1r2θ˙12r¨1r2)+gr2cosθ2)=Qθ2.\begin{aligned} M_2(r_2^2 \ddot{\theta}_2 + 2r_2 \dot{r}_2 \dot{\theta}_2) + \mu_2 (\cos{\Delta}(2\dot{r}_1r_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)+\sin{\Delta}(r_1r_2\dot{\theta}_1^2-\ddot{r}_1r_2)+gr_2\cos{\theta_2}) &= Q_{\theta_2}. \end{aligned}

Or, in matrix form

[μ2r2sinΔ0μ2r1r2cosΔM2r22][r¨1r¨2θ¨1θ¨2]=[2M2r2r˙2θ˙2μ2(2r˙1r2θ˙1cosΔ+r1r2θ˙12sinΔ+gr2cosθ2)+Qθ2].\begin{aligned} \begin{bmatrix} -\mu_2r_2 \sin{\Delta} & 0 & \mu_2r_1 r_2\cos{\Delta} & M_2r_2^2 \end{bmatrix} \begin{bmatrix} \ddot{r}_1\\ \ddot{r}_2\\ \ddot{\theta}_1\\ \ddot{\theta}_2\\ \end{bmatrix} &= \begin{bmatrix} -2M_2 r_2\dot{r}_2 \dot{\theta}_2 - \mu_2(2\dot{r}_1r_2\dot{\theta}_1\cos{\Delta} + r_1r_2\dot{\theta}_1^2\sin{\Delta} + gr_2\cos{\theta_2}) + Q_{\theta_2} \end{bmatrix}. \end{aligned}

Matrix form

[M1μ2cosΔ0μ2r2sinΔμ2cosΔM2μ2r1sinΔ00μ2r1sinΔM1r12μ2r1r2cosΔμ2r2sinΔ0μ2r1r2cosΔM2r22][r¨1r¨2θ¨1θ¨2]=[M1r1θ˙12+μ2(r2θ˙22cosΔ+2r˙2θ˙2sinΔ)μ1gsinθ1k1(r1l1)+Qr1M2r2θ˙22+μ2(r1θ˙12cosΔ2r˙1θ˙1sinΔgsinθ2)k2(r2l2)+Qr22M1r1r˙1θ˙1+μ2(r1r2θ˙22sinΔ2r1r˙2θ˙2cosΔ)μ1gr1cosθ1+Qθ12M2r2r˙2θ˙2μ2(2r˙1r2θ˙1cosΔ+r1r2θ˙12sinΔ+gr2cosθ2)+Qθ2]\begin{aligned} \begin{bmatrix} M_1 & \mu_2 \cos{\Delta} & 0 & -\mu_2r_2 \sin{\Delta}\\ \mu_2 \cos{\Delta} & M_2 & \mu_2 r_1\sin{\Delta} & 0 \\ 0 & \mu_2 r_1\sin{\Delta} & M_1r_1^2 & \mu_2 r_1r_2\cos{\Delta}\\ -\mu_2r_2 \sin{\Delta} & 0 & \mu_2r_1 r_2\cos{\Delta} & M_2r_2^2 \end{bmatrix} \begin{bmatrix} \ddot{r}_1\\ \ddot{r}_2\\ \ddot{\theta}_1\\ \ddot{\theta}_2\\ \end{bmatrix} &= \begin{bmatrix} M_1r_1\dot{\theta}_1^2 + \mu_2 (r_2 \dot{\theta}_2^2\cos{\Delta} + 2 \dot{r}_2 \dot{\theta}_2\sin{\Delta}) - \mu_1g\sin{\theta_1} - k_1(r_1-l_1) + Q_{r_1} \\ M_2r_2\dot{\theta}_2^2 + \mu_2 (r_1\dot{\theta}_1^2\cos{\Delta}-2\dot{r}_1\dot{\theta}_1\sin{\Delta} - g\sin{\theta_2}) - k_2(r_2-l_2) + Q_{r_2}\\ -2M_1r_1\dot{r}_1 \dot{\theta}_1 + \mu_2(r_1r_2\dot{\theta}_2^2 \sin{\Delta} -2r_1\dot{r}_2 \dot{\theta}_2\cos{\Delta}) - \mu_1 gr_1\cos{\theta_1} + Q_{\theta_1} \\ -2M_2 r_2\dot{r}_2 \dot{\theta}_2 - \mu_2(2\dot{r}_1r_2\dot{\theta}_1\cos{\Delta} + r_1r_2\dot{\theta}_1^2\sin{\Delta} + gr_2\cos{\theta_2}) + Q_{\theta_2} \end{bmatrix} \end{aligned}