D , j ⋅ ∂ q i ∂ r j . Where
j j j refers to the component of the system we are analysing.
( q i ) (q_i) ( q i ) are the generalized coordinates of the system.
( q ˙ i ) (\dot{q}_i) ( q ˙ i ) are the first time derivatives of the generalized coordinates of the system.
r ⃗ j \vec{r}_j r j is the position vector of component j j j of the system.
L \mathcal{L} L is the Lagrangian — the difference between the kinetic and potential energy — of the system.
p i = ∂ L ∂ q ˙ i p_i = \dfrac{\partial \mathcal{L}}{\partial \dot{q}_i} p i = ∂ q ˙ i ∂ L is the generalized momentum canonical to q i q_i q i .
F i = ∂ L ∂ q i F_i = \dfrac{\partial \mathcal{L}}{\partial q_i} F i = ∂ q i ∂ L is the generalized force canonical to q i q_i q i .
F ⃗ D , j \vec{F}_{D,j} F D , j is the dissipative force vector for component j j j .
e ^ j , i = ∂ r ⃗ j ∂ q i \hat{e}_{j,i} = \dfrac{\partial \vec{r}_j}{\partial q_i} e ^ j , i = ∂ q i ∂ r j is the generalized basis vector canonical to q i q_i q i for component j j j of the system.
The left-hand side of Equation Equation (1 ) can also be represented as − δ L δ q i -\dfrac{\delta \mathcal{L}}{\delta q_i} − δ q i δ L , where δ L δ q i \dfrac{\delta \mathcal{L}}{\delta q_i} δ q i δ L is the functional derivative of the Lagrangian with respect to q i q_i q i . To simplify things, we will call − δ L δ q i = δ ′ L δ ′ q i -\dfrac{\delta \mathcal{L}}{\delta q_i} = \dfrac{\delta' \mathcal{L}}{\delta' q_i} − δ q i δ L = δ ′ q i δ ′ L
The right-hand side of Equation Equation (1 ) is also called the generalized dissipative force and can be represented as Q i Q_i Q i .
As can be seen, we have four degrees of freedom in this system. The angles the two pendulums make with the positive x x x -axis — θ 1 \theta_1 θ 1 and θ 2 \theta_2 θ 2 , respectively — are among our degrees of freedom. We will also need degrees of freedom corresponding to the lengths of the pendulum rods. These degrees of freedom could either be the extent to which they are extended beyond their rest length or their total length. For the sake of simplicity, we will opt to use their total lengths — r 1 r_1 r 1 and r 2 r_2 r 2 , respectively. Hence
x 1 b = r 1 cos θ 1 x ˙ 1 b = r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 y 1 b = r 1 sin θ 1 y ˙ 1 b = r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 \begin{aligned} x_{1b} &= r_1 \cos{\theta_1} & \dot{x}_{1b} &= \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1}\\ y_{1b} &= r_1 \sin{\theta_1} & \dot{y}_{1b} &= \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} \end{aligned} x 1 b y 1 b = r 1 cos θ 1 = r 1 sin θ 1 x ˙ 1 b y ˙ 1 b = r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 = r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 This means that the velocity of the first pendulum bob is
v ⃗ 1 b = [ x ˙ 1 b y ˙ 1 b ] = [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] . \begin{aligned} \vec{v}_{1b} &= \begin{bmatrix} \dot{x}_{1b} \\ \dot{y}_{1b} \end{bmatrix} \\ &= \begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} \end{bmatrix}. \end{aligned} v 1 b = [ x ˙ 1 b y ˙ 1 b ] = [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] . Hence
∣ v ⃗ 1 b ∣ 2 = r ˙ 1 2 + r 1 2 θ ˙ 1 2 . \begin{aligned} |\vec{v}_{1b}|^2 &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2. \end{aligned} ∣ v 1 b ∣ 2 = r ˙ 1 2 + r 1 2 θ ˙ 1 2 . We will calculate the rod positions and velocities two different ways. For calculating the kinetic energy, we will parameterize them in terms of s s s — the distance along the pendulum — so that we can integrate over them. For calculating the potential energy and generalized dissipative force, we will calculate them using a centre of mass approach, as we will assume centre of mass approximations will work for these.
x 1 r = s cos θ 1 x ˙ 1 r = s ˙ cos θ 1 − s θ ˙ 1 sin θ 1 y 1 r = s sin θ 1 y ˙ 1 r = s ˙ sin θ 1 + s θ ˙ 1 cos θ 1 ∣ v ⃗ 1 r ∣ 2 = s ˙ 2 + s 2 θ ˙ 1 2 = s 2 r ˙ 1 2 r 1 2 + s 2 θ ˙ 1 2 = s 2 [ r ˙ 1 2 r 1 2 + θ ˙ 1 2 ] . \begin{aligned} x_{1r} &= s\cos{\theta_1} & \dot{x}_{1r} = \dot{s}\cos{\theta_1} - s\dot{\theta}_1 \sin{\theta_1} \\ y_{1r} &= s\sin{\theta_1} & \dot{y}_{1r} = \dot{s}\sin{\theta_1} + s\dot{\theta}_1 \cos{\theta_1} \\ |\vec{v}_{1r}|^2 &= \dot{s}^2 + s^2\dot{\theta}_1^2 \\ &= \dfrac{s^2\dot{r}_1^2}{r_1^2} + s^2\dot{\theta}_1^2 \\ &= s^2 \left[\dfrac{\dot{r}_1^2}{r_1^2}+\dot{\theta}_1^2\right]. \end{aligned} x 1 r y 1 r ∣ v 1 r ∣ 2 = s cos θ 1 = s sin θ 1 = s ˙ 2 + s 2 θ ˙ 1 2 = r 1 2 s 2 r ˙ 1 2 + s 2 θ ˙ 1 2 = s 2 [ r 1 2 r ˙ 1 2 + θ ˙ 1 2 ] . x ˙ 1 r = s ˙ cos θ 1 − s θ ˙ 1 sin θ 1 y ˙ 1 r = s ˙ sin θ 1 + s θ ˙ 1 cos θ 1 Here we have assumed that the motion of the pendulum rod is uniform.
x 1 r = r 1 cos θ 1 2 x ˙ 1 r = r 1 ˙ cos θ 1 2 − r 1 θ ˙ 1 sin θ 1 2 y 1 r = r 1 sin θ 1 2 y ˙ 1 r = r 1 ˙ sin θ 1 2 + r 1 θ ˙ 1 cos θ 1 2 v ⃗ 1 r = 1 2 [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ∣ v ⃗ 1 r ∣ 2 = 1 4 ( r ˙ 1 2 + r 1 2 θ ˙ 1 2 ) = ∣ v ⃗ 1 b ∣ 2 4 . \begin{aligned} x_{1r} &= \dfrac{r_1\cos{\theta_1}}{2} & \dot{x}_{1r} = \dfrac{\dot{r_1}\cos{\theta_1}}{2} - \dfrac{r_1\dot{\theta}_1 \sin{\theta_1}}{2} \\ y_{1r} &= \dfrac{r_1\sin{\theta_1}}{2} & \dot{y}_{1r} = \dfrac{\dot{r_1}\sin{\theta_1}}{2} + \dfrac{r_1\dot{\theta}_1 \cos{\theta_1}}{2} \\ \vec{v}_{1r} &= \dfrac{1}{2} \begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1 \sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1} \end{bmatrix} \\ |\vec{v}_{1r}|^2 &= \dfrac{1}{4} \left(\dot{r}_1^2 + r_1^2 \dot{\theta}_1^2\right)\\ &= \dfrac{|\vec{v}_{1b}|^2}{4}. \end{aligned} x 1 r y 1 r v 1 r ∣ v 1 r ∣ 2 = 2 r 1 cos θ 1 = 2 r 1 sin θ 1 = 2 1 [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] = 4 1 ( r ˙ 1 2 + r 1 2 θ ˙ 1 2 ) = 4 ∣ v 1 b ∣ 2 . x ˙ 1 r = 2 r 1 ˙ cos θ 1 − 2 r 1 θ ˙ 1 sin θ 1 y ˙ 1 r = 2 r 1 ˙ sin θ 1 + 2 r 1 θ ˙ 1 cos θ 1 x 2 b = x 1 b + r 2 cos θ 2 x ˙ 2 = x ˙ 1 b + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 y 2 b = y 1 b + r 2 sin θ 2 y ˙ 2 = y ˙ 1 b + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 . \begin{aligned} x_{2b} &= x_{1b} + r_2\cos{\theta_2} & \dot{x}_2 &= \dot{x}_{1b} + \dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2} \\ y_{2b} &= y_{1b} + r_2\sin{\theta_2} & \dot{y}_2 &= \dot{y}_{1b} + \dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}. \end{aligned} x 2 b y 2 b = x 1 b + r 2 cos θ 2 = y 1 b + r 2 sin θ 2 x ˙ 2 y ˙ 2 = x ˙ 1 b + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 = y ˙ 1 b + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 . As for the velocity of the second pendulum bob, it is
v ⃗ 2 b = [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ] . \begin{aligned} \vec{v}_{2b} &= \begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2} \end{bmatrix}. \end{aligned} v 2 b = [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ] . Let Δ = θ 2 − θ 1 \Delta = \theta_2-\theta_1 Δ = θ 2 − θ 1 , then square of the velocity is
∣ v ⃗ 2 b ∣ 2 = r ˙ 1 2 cos 2 θ 1 + r 1 2 θ ˙ 1 2 sin 2 θ 1 + r ˙ 2 2 cos 2 θ 2 + r 2 2 θ ˙ 2 2 sin 2 θ 2 − 2 r 1 r ˙ 1 θ ˙ 1 cos θ 1 sin θ 1 + 2 r ˙ 1 r ˙ 2 cos θ 1 cos θ 2 − 2 r ˙ 1 r 2 θ ˙ 2 cos θ 1 sin θ 2 − 2 r 1 r ˙ 2 θ ˙ 1 sin θ 1 cos θ 2 + 2 r 1 r 2 θ ˙ 1 θ ˙ 2 sin θ 1 sin θ 2 − 2 r ˙ 2 r 2 θ ˙ 2 cos θ 2 sin θ 2 + r ˙ 1 2 sin 2 θ 1 + r 1 2 θ ˙ 1 2 cos 2 θ 1 + r ˙ 2 2 sin 2 θ 2 + r 2 2 θ ˙ 2 2 cos 2 θ 2 + 2 r 1 r ˙ 1 θ ˙ 1 sin θ 1 cos θ 1 + 2 r ˙ 1 r ˙ 2 sin θ 1 sin θ 2 + 2 r ˙ 1 r 2 θ ˙ 2 sin θ 1 cos θ 2 + 2 r 1 r ˙ 2 θ ˙ 1 cos θ 1 sin θ 2 + 2 r 1 r 2 θ ˙ 1 θ ˙ 2 cos θ 1 cos θ 2 + 2 r 2 r ˙ 2 θ ˙ 2 sin θ 2 cos θ 2 = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r ˙ 2 2 + r 2 2 θ ˙ 2 2 + 2 r 1 r ˙ 1 θ ˙ 1 ( − cos θ 1 sin θ 1 + cos θ 1 sin θ 1 ) + 2 r ˙ 1 r ˙ 2 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 ) + 2 r ˙ 1 r 2 θ ˙ 2 ( − cos θ 1 sin θ 2 + sin θ 1 cos θ 2 ) + 2 r 1 r ˙ 2 θ ˙ 1 ( − sin θ 1 cos θ 2 + cos θ 1 sin θ 2 ) + 2 r 1 r 2 θ ˙ 1 θ ˙ 2 ( sin θ 1 sin θ 2 + cos θ 1 cos θ 2 ) + 2 r 2 r ˙ 2 θ ˙ 2 ( − cos θ 2 sin θ 2 + sin θ 2 cos θ 2 ) = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r ˙ 2 2 + r 2 2 θ ˙ 2 2 + 2 r ˙ 1 r ˙ 2 cos ( θ 2 − θ 1 ) − 2 r ˙ 1 r 2 θ 2 ˙ sin ( θ 2 − θ 1 ) + 2 r 1 r ˙ 2 θ ˙ 1 sin ( θ 2 − θ 1 ) + 2 r 1 r 2 θ ˙ 1 θ ˙ 2 cos ( θ 2 − θ 1 ) = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r ˙ 2 2 + r 2 2 θ ˙ 2 2 + 2 r ˙ 1 r ˙ 2 cos Δ − 2 r ˙ 1 r 2 θ 2 ˙ sin Δ + 2 r 1 r ˙ 2 θ ˙ 1 sin Δ + 2 r 1 r 2 θ ˙ 1 θ ˙ 2 cos Δ = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r ˙ 2 2 + r 2 2 θ ˙ 2 2 + 2 cos Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) + 2 sin Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) . \begin{aligned} |\vec{v}_{2b}|^2 &= \dot{r}_1^2 \cos^2{\theta_1} + r_1^2 \dot{\theta}_1^2\sin^2{\theta_1} + \dot{r}_2^2\cos^2{\theta_2} + r_2^2\dot{\theta}_2^2\sin^2{\theta_2} -2r_1\dot{r}_1\dot{\theta}_1 \cos{\theta}_1\sin{\theta_1} + 2\dot{r}_1\dot{r}_2\cos{\theta_1}\cos{\theta_2} - 2\dot{r}_1r_2\dot{\theta}_2\cos{\theta_1}\sin{\theta_2} - 2r_1\dot{r}_2 \dot{\theta}_1 \sin{\theta_1}\cos{\theta_2} + 2r_1r_2 \dot{\theta}_1\dot{\theta}_2\sin{\theta_1}\sin{\theta_2}\\ &-2\dot{r}_2r_2\dot{\theta}_2\cos{\theta_2}\sin{\theta_2} + \dot{r}_1^2\sin^2{\theta_1} + r_1^2\dot{\theta}_1^2\cos^2{\theta_1} + \dot{r}_2^2\sin^2{\theta_2} + r_2^2\dot{\theta}_2^2\cos^2{\theta_2} + 2r_1\dot{r}_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_1} + 2\dot{r}_1\dot{r}_2\sin{\theta_1}\sin{\theta_2} + 2\dot{r}_1r_2\dot{\theta}_2\sin{\theta_1}\cos{\theta_2} + 2r_1\dot{r}_2\dot{\theta}_1 \cos{\theta_1}\sin{\theta_2}\\ &+2r_1r_2\dot{\theta}_1\dot{\theta}_2\cos{\theta_1}\cos{\theta_2} + 2r_2\dot{r}_2\dot{\theta}_2\sin{\theta_2}\cos{\theta_2} \\ &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dot{r}_2^2 + r_2^2\dot{\theta}_2^2 + 2r_1\dot{r}_1\dot{\theta}_1(-\cos{\theta_1}\sin{\theta_1} + \cos{\theta_1}\sin{\theta_1}) + 2\dot{r}_1\dot{r}_2(\cos{\theta_1}\cos{\theta_2}+\sin{\theta_1}\sin{\theta_2})+2\dot{r}_1r_2\dot{\theta}_2(-\cos{\theta_1}\sin{\theta_2} + \sin{\theta_1}\cos{\theta_2}) \\ &+ 2r_1\dot{r}_2\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_2}+\cos{\theta_1}\sin{\theta_2}) + 2r_1r_2\dot{\theta}_1\dot{\theta}_2(\sin{\theta_1}\sin{\theta_2} + \cos{\theta_1}\cos{\theta_2}) + 2r_2\dot{r}_2\dot{\theta}_2 (-\cos{\theta_2}\sin{\theta_2} + \sin{\theta_2}\cos{\theta_2}) \\ &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dot{r}_2^2 + r_2^2\dot{\theta}_2^2 + 2\dot{r}_1\dot{r}_2 \cos{(\theta_2-\theta_1)} - 2\dot{r}_1r_2\dot{\theta_2}\sin{(\theta_2-\theta_1)} + 2r_1\dot{r}_2 \dot{\theta}_1 \sin{(\theta_2-\theta_1)} + 2r_1r_2\dot{\theta}_1\dot{\theta}_2\cos{(\theta_2-\theta_1)} \\ &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dot{r}_2^2 + r_2^2\dot{\theta}_2^2 + 2\dot{r}_1\dot{r}_2 \cos{\Delta} - 2\dot{r}_1r_2\dot{\theta_2}\sin{\Delta} + 2r_1\dot{r}_2 \dot{\theta}_1 \sin{\Delta} + 2r_1r_2\dot{\theta}_1\dot{\theta}_2\cos{\Delta} \\ &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dot{r}_2^2 + r_2^2\dot{\theta}_2^2 + 2\cos{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) + 2\sin{\Delta}(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2). \end{aligned} ∣ v 2 b ∣ 2 = r ˙ 1 2 cos 2 θ 1 + r 1 2 θ ˙ 1 2 sin 2 θ 1 + r ˙ 2 2 cos 2 θ 2 + r 2 2 θ ˙ 2 2 sin 2 θ 2 − 2 r 1 r ˙ 1 θ ˙ 1 cos θ 1 sin θ 1 + 2 r ˙ 1 r ˙ 2 cos θ 1 cos θ 2 − 2 r ˙ 1 r 2 θ ˙ 2 cos θ 1 sin θ 2 − 2 r 1 r ˙ 2 θ ˙ 1 sin θ 1 cos θ 2 + 2 r 1 r 2 θ ˙ 1 θ ˙ 2 sin θ 1 sin θ 2 − 2 r ˙ 2 r 2 θ ˙ 2 cos θ 2 sin θ 2 + r ˙ 1 2 sin 2 θ 1 + r 1 2 θ ˙ 1 2 cos 2 θ 1 + r ˙ 2 2 sin 2 θ 2 + r 2 2 θ ˙ 2 2 cos 2 θ 2 + 2 r 1 r ˙ 1 θ ˙ 1 sin θ 1 cos θ 1 + 2 r ˙ 1 r ˙ 2 sin θ 1 sin θ 2 + 2 r ˙ 1 r 2 θ ˙ 2 sin θ 1 cos θ 2 + 2 r 1 r ˙ 2 θ ˙ 1 cos θ 1 sin θ 2 + 2 r 1 r 2 θ ˙ 1 θ ˙ 2 cos θ 1 cos θ 2 + 2 r 2 r ˙ 2 θ ˙ 2 sin θ 2 cos θ 2 = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r ˙ 2 2 + r 2 2 θ ˙ 2 2 + 2 r 1 r ˙ 1 θ ˙ 1 ( − cos θ 1 sin θ 1 + cos θ 1 sin θ 1 ) + 2 r ˙ 1 r ˙ 2 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 ) + 2 r ˙ 1 r 2 θ ˙ 2 ( − cos θ 1 sin θ 2 + sin θ 1 cos θ 2 ) + 2 r 1 r ˙ 2 θ ˙ 1 ( − sin θ 1 cos θ 2 + cos θ 1 sin θ 2 ) + 2 r 1 r 2 θ ˙ 1 θ ˙ 2 ( sin θ 1 sin θ 2 + cos θ 1 cos θ 2 ) + 2 r 2 r ˙ 2 θ ˙ 2 ( − cos θ 2 sin θ 2 + sin θ 2 cos θ 2 ) = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r ˙ 2 2 + r 2 2 θ ˙ 2 2 + 2 r ˙ 1 r ˙ 2 cos ( θ 2 − θ 1 ) − 2 r ˙ 1 r 2 θ 2 ˙ sin ( θ 2 − θ 1 ) + 2 r 1 r ˙ 2 θ ˙ 1 sin ( θ 2 − θ 1 ) + 2 r 1 r 2 θ ˙ 1 θ ˙ 2 cos ( θ 2 − θ 1 ) = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r ˙ 2 2 + r 2 2 θ ˙ 2 2 + 2 r ˙ 1 r ˙ 2 cos Δ − 2 r ˙ 1 r 2 θ 2 ˙ sin Δ + 2 r 1 r ˙ 2 θ ˙ 1 sin Δ + 2 r 1 r 2 θ ˙ 1 θ ˙ 2 cos Δ = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r ˙ 2 2 + r 2 2 θ ˙ 2 2 + 2 cos Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) + 2 sin Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) . Let us define ∣ v ⃗ 2 b I ∣ 2 = r ˙ 2 2 + r 2 2 θ ˙ 2 2 |\vec{v}_{2b}^I|^2 = \dot{r}_2^2+r_2^2\dot{\theta}_2^2 ∣ v 2 b I ∣ 2 = r ˙ 2 2 + r 2 2 θ ˙ 2 2 , as this will simplify our Lagrangian later. As for the remaining terms in ∣ v ⃗ 2 b ∣ 2 |\vec{v}_{2b}|^2 ∣ v 2 b ∣ 2 , they are contained with ∣ Δ v ⃗ 2 , 1 ∣ 2 |\Delta \vec{v}_{2,1}|^2 ∣ Δ v 2 , 1 ∣ 2 .
∣ Δ v ⃗ 2 , 1 ∣ 2 = 2 cos Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) + 2 sin Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) . \begin{aligned} |\Delta \vec{v}_{2,1}|^2 &= 2\cos{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) + 2\sin{\Delta}(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2). \end{aligned} ∣ Δ v 2 , 1 ∣ 2 = 2 cos Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) + 2 sin Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) . x 2 r = r 1 cos θ 1 + s cos θ 2 x ˙ 2 r = r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + s ˙ cos θ 2 − s θ ˙ 2 sin θ 2 y 2 r = r 1 sin θ 1 + s sin θ 2 y ˙ 2 r = r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + s ˙ sin θ 2 + s θ ˙ 2 cos θ 2 \begin{aligned} x_{2r} &= r_1\cos{\theta_1} + s\cos{\theta_2} & \dot{x}_{2r} = \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1\sin{\theta_1} + \dot{s}\cos{\theta_2} - s\dot{\theta}_2 \sin{\theta_2} \\ y_{2r} &= r_1\sin{\theta_1} + s\sin{\theta_2} & \dot{y}_{2r} = \dot{r}_1 \sin{\theta_1} + r_1 \dot{\theta}_1\cos{\theta_1} + \dot{s}\sin{\theta_2} + s\dot{\theta}_2 \cos{\theta_2} \end{aligned} x 2 r y 2 r = r 1 cos θ 1 + s cos θ 2 = r 1 sin θ 1 + s sin θ 2 x ˙ 2 r = r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + s ˙ cos θ 2 − s θ ˙ 2 sin θ 2 y ˙ 2 r = r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + s ˙ sin θ 2 + s θ ˙ 2 cos θ 2 ∣ v ⃗ 2 r ∣ 2 = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + s ˙ 2 + s 2 θ ˙ 2 2 + 2 cos Δ ( r ˙ 1 s ˙ + r 1 s θ ˙ 1 θ ˙ 2 ) + 2 sin Δ ( r 1 s ˙ θ ˙ 1 − r ˙ 1 s θ ˙ 2 ) = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r ˙ 2 2 s 2 r 2 2 + s 2 θ ˙ 2 2 + 2 cos Δ ( r ˙ 1 r ˙ 2 s r 2 + r 1 s θ ˙ 1 θ ˙ 2 ) + 2 sin Δ ( r 1 s r ˙ 2 θ ˙ 1 r 2 − r ˙ 1 s θ ˙ 2 ) . \begin{aligned} |\vec{v}_{2r}|^2 &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dot{s}^2 + s^2\dot{\theta}_2^2 + 2\cos{\Delta}\left(\dot{r}_1\dot{s} + r_1s\dot{\theta}_1\dot{\theta}_2\right) + 2\sin{\Delta}\left(r_1\dot{s}\dot{\theta}_1-\dot{r}_1s\dot{\theta}_2\right) \\ &= \dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dfrac{\dot{r}_2^2 s^2}{r_2^2} + s^2\dot{\theta}_2^2 + 2\cos{\Delta}\left(\dfrac{\dot{r}_1\dot{r}_2 s}{r_2} + r_1s\dot{\theta}_1\dot{\theta}_2\right) + 2\sin{\Delta}\left(\dfrac{r_1s\dot{r}_2\dot{\theta}_1}{r_2}-\dot{r}_1s\dot{\theta}_2\right). \end{aligned} ∣ v 2 r ∣ 2 = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + s ˙ 2 + s 2 θ ˙ 2 2 + 2 cos Δ ( r ˙ 1 s ˙ + r 1 s θ ˙ 1 θ ˙ 2 ) + 2 sin Δ ( r 1 s ˙ θ ˙ 1 − r ˙ 1 s θ ˙ 2 ) = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r 2 2 r ˙ 2 2 s 2 + s 2 θ ˙ 2 2 + 2 cos Δ ( r 2 r ˙ 1 r ˙ 2 s + r 1 s θ ˙ 1 θ ˙ 2 ) + 2 sin Δ ( r 2 r 1 s r ˙ 2 θ ˙ 1 − r ˙ 1 s θ ˙ 2 ) . x 2 r = r 1 cos θ 1 + r 2 cos θ 2 2 x ˙ 2 r = r 1 ˙ cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r 2 ˙ cos θ 2 2 − r 2 θ ˙ 2 sin θ 2 2 y 2 r = r 1 sin θ 1 + r 2 sin θ 2 2 y ˙ 2 r = r 1 ˙ sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r 2 ˙ sin θ 2 2 + r 2 θ ˙ 2 cos θ 2 2 \begin{aligned} x_{2r} &= r_1\cos{\theta_1} + \dfrac{r_2\cos{\theta_2}}{2} & \dot{x}_{2r} = \dot{r_1}\cos{\theta_1} - r_1\dot{\theta}_1 \sin{\theta_1} + \dfrac{\dot{r_2}\cos{\theta_2}}{2} - \dfrac{r_2\dot{\theta}_2 \sin{\theta_2}}{2} \\ y_{2r} &= r_1\sin{\theta_1} + \dfrac{r_2\sin{\theta_2}}{2} & \dot{y}_{2r} = \dot{r_1}\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dfrac{\dot{r_2}\sin{\theta_2}}{2} + \dfrac{r_2\dot{\theta}_2 \cos{\theta_2}}{2} \\ \end{aligned} x 2 r y 2 r = r 1 cos θ 1 + 2 r 2 cos θ 2 = r 1 sin θ 1 + 2 r 2 sin θ 2 x ˙ 2 r = r 1 ˙ cos θ 1 − r 1 θ ˙ 1 sin θ 1 + 2 r 2 ˙ cos θ 2 − 2 r 2 θ ˙ 2 sin θ 2 y ˙ 2 r = r 1 ˙ sin θ 1 + r 1 θ ˙ 1 cos θ 1 + 2 r 2 ˙ sin θ 2 + 2 r 2 θ ˙ 2 cos θ 2 ∣ v ⃗ 2 r ∣ 2 = r ˙ 1 2 cos 2 θ 1 − 2 r ˙ 1 r 1 θ ˙ 1 sin θ 1 cos θ 1 + r 1 2 θ ˙ 1 2 sin 2 θ 1 + r ˙ 2 2 cos 2 θ 2 4 + r 2 2 θ ˙ 2 2 sin 2 θ 2 4 − r 2 r ˙ 2 θ ˙ 2 cos θ 2 sin θ 2 2 + r ˙ 1 r ˙ 2 cos θ 1 cos θ 2 − r ˙ 1 r 2 θ ˙ 2 cos θ 1 sin θ 2 + r 1 r ˙ 2 θ ˙ 1 sin θ 1 cos θ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 sin θ 1 sin θ 2 + r ˙ 1 2 sin 2 θ 1 + r 1 2 θ ˙ 1 2 cos 2 θ 1 + r ˙ 2 2 sin 2 θ 2 4 + r 2 2 θ ˙ 2 2 cos 2 θ 2 4 + 2 r ˙ 1 r 1 θ ˙ 1 sin θ 1 cos θ 1 + r ˙ 1 r ˙ 2 sin θ 1 sin θ 2 + r ˙ 1 r 2 θ ˙ 2 sin θ 1 cos θ 2 + r 1 r ˙ 2 θ ˙ 1 cos θ 1 sin θ 2 + r 1 r 2 θ 1 ˙ θ 2 ˙ cos θ 1 cos θ 2 + r 2 r ˙ 2 θ ˙ 2 sin θ 2 cos θ 2 2 = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r ˙ 2 2 + r 2 2 θ ˙ 2 2 4 + r 1 r ˙ 2 θ ˙ 1 sin Δ + r ˙ 1 r ˙ 2 cos Δ + r 1 r 2 θ ˙ 1 θ ˙ 2 cos Δ − r ˙ 1 r 1 θ ˙ 1 sin Δ = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r ˙ 2 2 + r 2 2 θ ˙ 2 2 4 + sin Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 1 θ ˙ 1 ) + cos Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) = ∣ v ⃗ 1 b ∣ 2 + ∣ v ⃗ 2 b I ∣ 2 4 + ∣ Δ v ⃗ 2 , 1 ∣ 2 2 \begin{aligned} |\vec{v}_{2r}|^2 &= \dot{r}_1^2\cos^2{\theta_1} - 2\dot{r}_1r_1\dot{\theta}_1 \sin{\theta_1}\cos{\theta_1} + r_1^2\dot{\theta}_1^2\sin^2{\theta_1} + \dfrac{\dot{r}_2^2\cos^2{\theta_2}}{4} + \dfrac{r_2^2\dot{\theta}_2^2\sin^2{\theta_2}}{4} - \dfrac{r_2\dot{r}_2\dot{\theta}_2 \cos{\theta_2}\sin{\theta_2}}{2} + \\ & \dot{r}_1\dot{r}_2\cos{\theta_1}\cos{\theta_2} - \dot{r}_1r_2\dot{\theta}_2 \cos{\theta_1}\sin{\theta_2} + r_1\dot{r}_2 \dot{\theta}_1 \sin{\theta_1}\cos{\theta_2} + r_1r_2 \dot{\theta}_1 \dot{\theta}_2 \sin{\theta_1}\sin{\theta_2} + \dot{r}_1^2\sin^2{\theta_1} + \\ & r_1^2 \dot{\theta}_1^2\cos^2{\theta_1} + \dfrac{\dot{r}_2^2\sin^2{\theta_2}}{4} + \dfrac{r_2^2\dot{\theta}_2^2\cos^2{\theta_2}}{4} + 2\dot{r}_1r_1 \dot{\theta}_1\sin{\theta_1}\cos{\theta_1} + \dot{r}_1\dot{r}_2\sin{\theta_1}\sin{\theta_2} + \dot{r}_1 r_2\dot{\theta}_2 \sin{\theta_1}\cos{\theta_2} + \\ & r_1\dot{r}_2 \dot{\theta}_1 \cos{\theta_1}\sin{\theta_2} + r_1r_2\dot{\theta_1}\dot{\theta_2}\cos{\theta_1}\cos{\theta_2} + \dfrac{r_2\dot{r}_2\dot{\theta}_2\sin{\theta_2}\cos{\theta_2}}{2}\\ &= \dot{r}_1^2 + r_1^2\dot{\theta}_1^2 + \dfrac{\dot{r}_2^2 + r_2^2\dot{\theta}_2^2}{4} + r_1\dot{r}_2\dot{\theta}_1\sin{\Delta} + \dot{r}_1\dot{r}_2 \cos{\Delta} + r_1r_2 \dot{\theta}_1\dot{\theta}_2 \cos{\Delta} - \dot{r}_1r_1 \dot{\theta}_1\sin{\Delta} \\ &= \dot{r}_1^2 + r_1^2\dot{\theta}_1^2 + \dfrac{\dot{r}_2^2 + r_2^2\dot{\theta}_2^2}{4} + \sin{\Delta}(r_1\dot{r}_2\dot{\theta}_1 - \dot{r}_1r_1 \dot{\theta}_1) + \cos{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2 \dot{\theta}_1\dot{\theta}_2) \\ &= |\vec{v}_{1b}|^2 + \dfrac{|\vec{v}_{2b}^I|^2}{4} + \dfrac{|\Delta \vec{v}_{2,1}|^2}{2} \end{aligned} ∣ v 2 r ∣ 2 = r ˙ 1 2 cos 2 θ 1 − 2 r ˙ 1 r 1 θ ˙ 1 sin θ 1 cos θ 1 + r 1 2 θ ˙ 1 2 sin 2 θ 1 + 4 r ˙ 2 2 cos 2 θ 2 + 4 r 2 2 θ ˙ 2 2 sin 2 θ 2 − 2 r 2 r ˙ 2 θ ˙ 2 cos θ 2 sin θ 2 + r ˙ 1 r ˙ 2 cos θ 1 cos θ 2 − r ˙ 1 r 2 θ ˙ 2 cos θ 1 sin θ 2 + r 1 r ˙ 2 θ ˙ 1 sin θ 1 cos θ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 sin θ 1 sin θ 2 + r ˙ 1 2 sin 2 θ 1 + r 1 2 θ ˙ 1 2 cos 2 θ 1 + 4 r ˙ 2 2 sin 2 θ 2 + 4 r 2 2 θ ˙ 2 2 cos 2 θ 2 + 2 r ˙ 1 r 1 θ ˙ 1 sin θ 1 cos θ 1 + r ˙ 1 r ˙ 2 sin θ 1 sin θ 2 + r ˙ 1 r 2 θ ˙ 2 sin θ 1 cos θ 2 + r 1 r ˙ 2 θ ˙ 1 cos θ 1 sin θ 2 + r 1 r 2 θ 1 ˙ θ 2 ˙ cos θ 1 cos θ 2 + 2 r 2 r ˙ 2 θ ˙ 2 sin θ 2 cos θ 2 = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + 4 r ˙ 2 2 + r 2 2 θ ˙ 2 2 + r 1 r ˙ 2 θ ˙ 1 sin Δ + r ˙ 1 r ˙ 2 cos Δ + r 1 r 2 θ ˙ 1 θ ˙ 2 cos Δ − r ˙ 1 r 1 θ ˙ 1 sin Δ = r ˙ 1 2 + r 1 2 θ ˙ 1 2 + 4 r ˙ 2 2 + r 2 2 θ ˙ 2 2 + sin Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 1 θ ˙ 1 ) + cos Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) = ∣ v 1 b ∣ 2 + 4 ∣ v 2 b I ∣ 2 + 2 ∣ Δ v 2 , 1 ∣ 2 We will assume that the dissipative forces are proportion to the velocity and velocity squared of the pendulum bobs. Meaning they will have the form
F ⃗ D , j = − ( b j + c j ∣ v ⃗ j ∣ ) v ⃗ j . \begin{aligned} \vec{F}_{D,j} &= -(b_j+c_j|\vec{v}_j|)\vec{v}_j. \end{aligned} F D , j = − ( b j + c j ∣ v j ∣ ) v j . Where j j j is the pendulum bob of interest, b j b_j b j and c j c_j c j are constants.
The kinetic energy of the system is given by
T = m 1 b 2 ∣ v ⃗ 1 b ∣ 2 + ∫ 0 r 1 m 1 r 2 r 1 ∣ v ⃗ 1 r ∣ 2 d s + m 2 b 2 ∣ v ⃗ 2 b ∣ 2 + ∫ 0 r 2 m 2 r 2 r 2 ∣ v ⃗ 2 r ∣ 2 d s \begin{aligned} T &= \dfrac{m_{1b}}{2}|\vec{v}_{1b}|^2 + \int_0^{r_1}\dfrac{m_{1r}}{2r_1} |\vec{v}_{1r}|^2 ds + \dfrac{m_{2b}}{2}|\vec{v}_{2b}|^2 + \int_0^{r_2} \dfrac{m_{2r}}{2r_2} |\vec{v}_{2r}|^2 ds \end{aligned} T = 2 m 1 b ∣ v 1 b ∣ 2 + ∫ 0 r 1 2 r 1 m 1 r ∣ v 1 r ∣ 2 d s + 2 m 2 b ∣ v 2 b ∣ 2 + ∫ 0 r 2 2 r 2 m 2 r ∣ v 2 r ∣ 2 d s ∫ 0 r 1 m 1 r 2 r 1 ∣ v ⃗ 1 r ∣ 2 d s = ∫ 0 r 1 m 1 r 2 r 1 s 2 [ r ˙ 1 2 r 1 2 + θ ˙ 1 2 ] d s = m 1 r 2 r 1 [ r ˙ 1 2 r 1 2 + θ ˙ 1 2 ] [ s 3 3 ] 0 r 1 = m 1 r 2 r 1 [ r ˙ 1 2 r 1 2 + θ ˙ 1 2 ] r 1 3 3 = m 1 r 6 [ r ˙ 1 2 + r 1 2 θ ˙ 1 2 ] = m 1 r 6 ∣ v ⃗ 1 b ∣ 2 . \begin{aligned} \int_0^{r_1}\dfrac{m_{1r}}{2r_1} |\vec{v}_{1r}|^2 ds &= \int_0^{r_1} \dfrac{m_{1r}}{2r_1} s^2 \left[\dfrac{\dot{r}_1^2}{r_1^2}+\dot{\theta}_1^2\right] ds \\ &= \dfrac{m_{1r}}{2r_1} \left[\dfrac{\dot{r}_1^2}{r_1^2}+\dot{\theta}_1^2\right] \left[\dfrac{s^3}{3}\right]_0^{r_1} \\ &= \dfrac{m_{1r}}{2r_1} \left[\dfrac{\dot{r}_1^2}{r_1^2}+\dot{\theta}_1^2\right] \dfrac{r_1^3}{3} \\ &= \dfrac{m_{1r}}{6}\left[\dot{r}_1^2+r_1^2\dot{\theta}_1^2\right] \\ &= \dfrac{m_{1r}}{6} |\vec{v}_{1b}|^2. \end{aligned} ∫ 0 r 1 2 r 1 m 1 r ∣ v 1 r ∣ 2 d s = ∫ 0 r 1 2 r 1 m 1 r s 2 [ r 1 2 r ˙ 1 2 + θ ˙ 1 2 ] d s = 2 r 1 m 1 r [ r 1 2 r ˙ 1 2 + θ ˙ 1 2 ] [ 3 s 3 ] 0 r 1 = 2 r 1 m 1 r [ r 1 2 r ˙ 1 2 + θ ˙ 1 2 ] 3 r 1 3 = 6 m 1 r [ r ˙ 1 2 + r 1 2 θ ˙ 1 2 ] = 6 m 1 r ∣ v 1 b ∣ 2 . ∫ 0 r 2 m 2 r 2 r 2 ∣ v ⃗ 2 r ∣ 2 d s = ∫ 0 r 2 m 2 r 2 r 2 [ r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r ˙ 2 2 s 2 r 2 2 + s 2 θ ˙ 2 2 + 2 cos Δ ( r ˙ 1 r ˙ 2 s r 2 + r 1 s θ ˙ 1 θ ˙ 2 ) + 2 sin Δ ( r 1 s r ˙ 2 θ ˙ 1 r 2 − r ˙ 1 s θ ˙ 2 ) ] d s = m 2 r 2 ∣ v ⃗ 1 b ∣ 2 + m 2 r 2 r 2 ∫ 0 r 2 s 2 ( r ˙ 2 2 r 2 2 + θ ˙ 2 2 ) + 2 s [ cos Δ ( r ˙ 1 r ˙ 2 r 2 + r 1 θ ˙ 1 θ ˙ 2 ) + sin Δ ( r 1 r ˙ 2 θ ˙ 1 r 2 − r ˙ 1 θ ˙ 2 ) ] d s = m 2 r 2 ∣ v ⃗ 1 b ∣ 2 + m 2 r 2 r 2 [ r 2 3 3 ( r ˙ 2 2 r 2 2 + θ ˙ 2 2 ) + r 2 2 [ cos Δ ( r ˙ 1 r ˙ 2 r 2 + r 1 θ ˙ 1 θ ˙ 2 ) + sin Δ ( r 1 r ˙ 2 θ ˙ 1 r 2 − r ˙ 1 θ ˙ 2 ) ] ] = m 2 r 2 ∣ v ⃗ 1 b ∣ 2 + m 2 r 6 ∣ v ⃗ 2 b I ∣ 2 + m 2 r 4 ∣ Δ v ⃗ 2 , 1 I ∣ 2 \begin{aligned} \int_0^{r_2} \dfrac{m_{2r}}{2r_2} |\vec{v}_{2r}|^2 ds &= \int_0^{r_2} \dfrac{m_{2r}}{2r_2} \left[\dot{r}_1^2 + r_1^2 \dot{\theta}_1^2 + \dfrac{\dot{r}_2^2 s^2}{r_2^2} + s^2\dot{\theta}_2^2 + 2\cos{\Delta}\left(\dfrac{\dot{r}_1\dot{r}_2 s}{r_2} + r_1s\dot{\theta}_1\dot{\theta}_2\right) + 2\sin{\Delta}\left(\dfrac{r_1s\dot{r}_2\dot{\theta}_1}{r_2}-\dot{r}_1s\dot{\theta}_2\right)\right] ds \\ &= \dfrac{m_{2r}}{2} |\vec{v}_{1b}|^2 + \dfrac{m_{2r}}{2r_2}\int_0^{r_2} s^2\left(\dfrac{\dot{r}_2^2}{r_2^2} + \dot{\theta}_2^2\right) + 2s\left[\cos{\Delta}\left(\dfrac{\dot{r}_1\dot{r}_2 }{r_2} + r_1\dot{\theta}_1\dot{\theta}_2\right) + \sin{\Delta}\left(\dfrac{r_1\dot{r}_2\dot{\theta}_1}{r_2}-\dot{r}_1\dot{\theta}_2\right)\right]ds \\ &= \dfrac{m_{2r}}{2} |\vec{v}_{1b}|^2 + \dfrac{m_{2r}}{2r_2}\left[\dfrac{r_2^3}{3}\left(\dfrac{\dot{r}_2^2}{r_2^2} + \dot{\theta}_2^2\right) + r_2^2\left[\cos{\Delta}\left(\dfrac{\dot{r}_1\dot{r}_2 }{r_2} + r_1\dot{\theta}_1\dot{\theta}_2\right) + \sin{\Delta}\left(\dfrac{r_1\dot{r}_2\dot{\theta}_1}{r_2}-\dot{r}_1\dot{\theta}_2\right)\right]\right] \\ &= \dfrac{m_{2r}}{2} |\vec{v}_{1b}|^2 + \dfrac{m_{2r}}{6} |\vec{v}_{2b}^{I}|^2 + \dfrac{m_{2r}}{4}|\Delta \vec{v}_{2,1}^I|^2 \end{aligned} ∫ 0 r 2 2 r 2 m 2 r ∣ v 2 r ∣ 2 d s = ∫ 0 r 2 2 r 2 m 2 r [ r ˙ 1 2 + r 1 2 θ ˙ 1 2 + r 2 2 r ˙ 2 2 s 2 + s 2 θ ˙ 2 2 + 2 cos Δ ( r 2 r ˙ 1 r ˙ 2 s + r 1 s θ ˙ 1 θ ˙ 2 ) + 2 sin Δ ( r 2 r 1 s r ˙ 2 θ ˙ 1 − r ˙ 1 s θ ˙ 2 ) ] d s = 2 m 2 r ∣ v 1 b ∣ 2 + 2 r 2 m 2 r ∫ 0 r 2 s 2 ( r 2 2 r ˙ 2 2 + θ ˙ 2 2 ) + 2 s [ cos Δ ( r 2 r ˙ 1 r ˙ 2 + r 1 θ ˙ 1 θ ˙ 2 ) + sin Δ ( r 2 r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 θ ˙ 2 ) ] d s = 2 m 2 r ∣ v 1 b ∣ 2 + 2 r 2 m 2 r [ 3 r 2 3 ( r 2 2 r ˙ 2 2 + θ ˙ 2 2 ) + r 2 2 [ cos Δ ( r 2 r ˙ 1 r ˙ 2 + r 1 θ ˙ 1 θ ˙ 2 ) + sin Δ ( r 2 r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 θ ˙ 2 ) ] ] = 2 m 2 r ∣ v 1 b ∣ 2 + 6 m 2 r ∣ v 2 b I ∣ 2 + 4 m 2 r ∣ Δ v 2 , 1 I ∣ 2 T = m 1 b 2 ∣ v ⃗ 1 b ∣ 2 + m 1 r 6 ∣ v ⃗ 1 b ∣ 2 + m 2 b 2 ( ∣ v ⃗ 1 b ∣ 2 + ∣ v ⃗ 2 b I ∣ 2 + ∣ Δ v ⃗ 2 , 1 I ∣ 2 ) + m 2 r 2 ∣ v ⃗ 1 b ∣ 2 + m 2 r 6 ∣ v ⃗ 2 b I ∣ 2 + m 2 r 4 ∣ Δ v ⃗ 2 , 1 I ∣ 2 = m 1 b + m 1 r 3 + m 2 b + m 2 r 2 ∣ v ⃗ 1 b ∣ 2 + m 2 b + m 2 r 3 2 ∣ v ⃗ 2 b I ∣ 2 + m 2 b + m 2 r 2 2 ∣ Δ v ⃗ 2 , 1 I ∣ 2 . \begin{aligned} T &= \dfrac{m_{1b}}{2}|\vec{v}_{1b}|^2 + \dfrac{m_{1r}}{6} |\vec{v}_{1b}|^2 + \dfrac{m_{2b}}{2}(|\vec{v}_{1b}|^2+|\vec{v}_{2b}^I|^2+|\Delta \vec{v}_{2,1}^I|^2) + \dfrac{m_{2r}}{2} |\vec{v}_{1b}|^2 + \dfrac{m_{2r}}{6} |\vec{v}_{2b}^{I}|^2 + \dfrac{m_{2r}}{4}|\Delta \vec{v}_{2,1}^I|^2 \\ &= \dfrac{m_{1b}+\dfrac{m_{1r}}{3}+m_{2b}+m_{2r}}{2} |\vec{v}_{1b}|^2 + \dfrac{m_{2b} + \dfrac{m_{2r}}{3}}{2}|\vec{v}_{2b}^I|^2 + \dfrac{m_{2b}+\dfrac{m_{2r}}{2}}{2}|\Delta \vec{v}_{2,1}^I|^2. \end{aligned} T = 2 m 1 b ∣ v 1 b ∣ 2 + 6 m 1 r ∣ v 1 b ∣ 2 + 2 m 2 b ( ∣ v 1 b ∣ 2 + ∣ v 2 b I ∣ 2 + ∣ Δ v 2 , 1 I ∣ 2 ) + 2 m 2 r ∣ v 1 b ∣ 2 + 6 m 2 r ∣ v 2 b I ∣ 2 + 4 m 2 r ∣ Δ v 2 , 1 I ∣ 2 = 2 m 1 b + 3 m 1 r + m 2 b + m 2 r ∣ v 1 b ∣ 2 + 2 m 2 b + 3 m 2 r ∣ v 2 b I ∣ 2 + 2 m 2 b + 2 m 2 r ∣ Δ v 2 , 1 I ∣ 2 . Let M j = ∑ i = j b 2 r m i ( 1 − 2 δ i , j r 3 ) M_j = \displaystyle \sum_{i=jb}^{2r} m_i \left(1-\dfrac{2\delta_{i,jr}}{3}\right) M j = i = j b ∑ 2 r m i ( 1 − 3 2 δ i , j r ) and μ j = ∑ i = j b 2 r m i ( 1 − δ i , j r 2 ) \mu_j = \displaystyle \sum_{i=jb}^{2r} m_i \left(1-\dfrac{\delta_{i,jr}}{2}\right) μ j = i = j b ∑ 2 r m i ( 1 − 2 δ i , j r ) , where δ i , j \delta_{i,j} δ i , j is the Kronecker delta symbol. For instance, M 1 = m 1 b + m 1 r 3 + m 2 b + m 2 r M_1 = m_{1b} + \dfrac{m_{1r}}{3} + m_{2b} + m_{2r} M 1 = m 1 b + 3 m 1 r + m 2 b + m 2 r and μ 2 = m 2 b + m 2 r 2 \mu_2 = m_{2b} + \dfrac{m_{2r}}{2} μ 2 = m 2 b + 2 m 2 r . Then
T = M 1 2 ∣ v ⃗ 1 b ∣ 2 + M 2 2 ∣ v ⃗ 2 b I ∣ 2 + μ 2 2 ∣ Δ v ⃗ 2 , 1 I ∣ 2 . \begin{aligned} T &= \dfrac{M_1}{2} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2}|\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}|\Delta \vec{v}_{2,1}^I|^2. \end{aligned} T = 2 M 1 ∣ v 1 b ∣ 2 + 2 M 2 ∣ v 2 b I ∣ 2 + 2 μ 2 ∣ Δ v 2 , 1 I ∣ 2 . The potential energy of the system is given by
V = m 1 b g y 1 b + m 1 r g y 1 r + m 2 b g y 2 b + m 2 r g y 2 r + k 1 ( r 1 − l 1 ) 2 + k 2 ( r 2 − l 2 ) 2 2 = m 1 b g r 1 sin θ 1 + m 1 r g r 1 sin θ 1 2 + m 2 r g ( r 1 sin θ 1 + r 2 sin θ 2 2 ) + m 2 b g ( r 1 sin θ 1 + r 2 sin θ 2 ) + k 1 ( r 1 − l 1 ) 2 + k 2 ( r 2 − l 2 ) 2 2 = ( m 1 b + m 1 r 2 + m 2 b + m 2 r ) g r 1 sin θ 1 + ( m 2 b + m 2 r 2 ) g r 2 sin θ 2 + k 1 ( r 1 − l 1 ) 2 + k 2 ( r 2 − l 2 ) 2 2 = μ 1 g r 1 sin θ 1 + μ 2 g r 2 sin θ 2 + k 1 ( r 1 − l 1 ) 2 + k 2 ( r 2 − l 2 ) 2 2 \begin{aligned} V &= m_{1b} gy_{1b} + m_{1r}gy_{1r} + m_{2b} gy_{2b} + m_{2r}gy_{2r} + \dfrac{k_1(r_1-l_1)^2+k_2(r_2-l_2)^2}{2}\\ &= m_{1b} gr_1\sin{\theta_1} + \dfrac{m_{1r} gr_1\sin{\theta_1}}{2} + m_{2r}g\left(r_1\sin{\theta_1} + \dfrac{r_2\sin{\theta_2}}{2}\right) + m_{2b}g(r_1\sin{\theta_1} + r_2\sin{\theta_2}) + \dfrac{k_1(r_1-l_1)^2+k_2(r_2-l_2)^2}{2}\\ &= \left(m_{1b} + \dfrac{m_{1r}}{2} + m_{2b} + m_{2r}\right)gr_1\sin{\theta_1} + \left(m_{2b}+\dfrac{m_{2r}}{2}\right)gr_2\sin{\theta_2} + \dfrac{k_1(r_1-l_1)^2+k_2(r_2-l_2)^2}{2} \\ &= \mu_1 gr_1\sin{\theta_1} + \mu_2 gr_2\sin{\theta_2} + \dfrac{k_1(r_1-l_1)^2+k_2(r_2-l_2)^2}{2} \end{aligned} V = m 1 b g y 1 b + m 1 r g y 1 r + m 2 b g y 2 b + m 2 r g y 2 r + 2 k 1 ( r 1 − l 1 ) 2 + k 2 ( r 2 − l 2 ) 2 = m 1 b g r 1 sin θ 1 + 2 m 1 r g r 1 sin θ 1 + m 2 r g ( r 1 sin θ 1 + 2 r 2 sin θ 2 ) + m 2 b g ( r 1 sin θ 1 + r 2 sin θ 2 ) + 2 k 1 ( r 1 − l 1 ) 2 + k 2 ( r 2 − l 2 ) 2 = ( m 1 b + 2 m 1 r + m 2 b + m 2 r ) g r 1 sin θ 1 + ( m 2 b + 2 m 2 r ) g r 2 sin θ 2 + 2 k 1 ( r 1 − l 1 ) 2 + k 2 ( r 2 − l 2 ) 2 = μ 1 g r 1 sin θ 1 + μ 2 g r 2 sin θ 2 + 2 k 1 ( r 1 − l 1 ) 2 + k 2 ( r 2 − l 2 ) 2 Hence the Lagrangian of the system is
L = T − V = M 1 2 ∣ v ⃗ 1 b ∣ 2 + M 2 2 ∣ v ⃗ 2 b I ∣ 2 + μ 2 2 ∣ Δ v ⃗ 2 , 1 I ∣ 2 − ( μ 1 g r 1 sin θ 1 + μ 2 g r 2 sin θ 2 + k 1 ( r 1 − l 1 ) 2 + k 2 ( r 2 − l 2 ) 2 2 ) = M 1 2 ∣ v ⃗ 1 b ∣ 2 + M 2 2 ∣ v ⃗ 2 b I ∣ 2 + μ 2 2 ( ∣ Δ v ⃗ 2 , 1 I ∣ 2 − 2 g r 2 sin θ 2 ) − μ 1 g r 1 sin θ 1 − k 1 ( r 1 − l 1 ) 2 + k 2 ( r 2 − l 2 ) 2 2 . \begin{aligned} \mathcal{L} &= T - V \\ &= \dfrac{M_1}{2} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2}|\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}|\Delta \vec{v}_{2,1}^I|^2 - \left(\mu_1 gr_1\sin{\theta_1} + \mu_2 gr_2\sin{\theta_2} + \dfrac{k_1(r_1-l_1)^2+k_2(r_2-l_2)^2}{2}\right) \\ &= \dfrac{M_1}{2} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2}|\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}(|\Delta \vec{v}_{2,1}^I|^2 - 2gr_2 \sin{\theta_2}) - \mu_1 gr_1 \sin{\theta_1} - \dfrac{k_1(r_1-l_1)^2+k_2(r_2-l_2)^2}{2}. \end{aligned} L = T − V = 2 M 1 ∣ v 1 b ∣ 2 + 2 M 2 ∣ v 2 b I ∣ 2 + 2 μ 2 ∣ Δ v 2 , 1 I ∣ 2 − ( μ 1 g r 1 sin θ 1 + μ 2 g r 2 sin θ 2 + 2 k 1 ( r 1 − l 1 ) 2 + k 2 ( r 2 − l 2 ) 2 ) = 2 M 1 ∣ v 1 b ∣ 2 + 2 M 2 ∣ v 2 b I ∣ 2 + 2 μ 2 ( ∣ Δ v 2 , 1 I ∣ 2 − 2 g r 2 sin θ 2 ) − μ 1 g r 1 sin θ 1 − 2 k 1 ( r 1 − l 1 ) 2 + k 2 ( r 2 − l 2 ) 2 . We will not expand this Lagrangian, as doing so just adds to its complexity. Instead, we will calculate the derivatives of each of its components.
The relevant partial and standard derivatives are:
∂ ∣ v ⃗ 1 b ∣ 2 ∂ r 1 = 2 r 1 θ ˙ 1 2 ∂ ∣ v ⃗ 1 b ∣ 2 ∂ r 2 = 0 ∂ ∣ v ⃗ 1 b ∣ 2 ∂ θ 1 = 0 ∂ ∣ v ⃗ 1 b ∣ 2 ∂ θ 2 = 0 ∂ ∣ v ⃗ 1 b ∣ 2 ∂ r ˙ 1 = 2 r ˙ 1 ∂ ∣ v ⃗ 1 b ∣ 2 ∂ r ˙ 2 = 0 ∂ ∣ v ⃗ 1 b ∣ 2 ∂ θ ˙ 1 = 2 r 1 2 θ ˙ 1 ∂ ∣ v ⃗ 1 b ∣ 2 ∂ θ ˙ 2 = 0 d d t ∂ ∣ v ⃗ 1 b ∣ 2 ∂ r ˙ 1 = 2 r ¨ 1 d d t ∂ ∣ v ⃗ 1 b ∣ 2 ∂ r ˙ 2 = 0 d d t ∂ ∣ v ⃗ 1 b ∣ 2 ∂ θ ˙ 1 = 2 r 1 2 θ ¨ 1 + 4 r 1 r ˙ 1 θ ˙ 1 d d t ∂ ∣ v ⃗ 1 b ∣ 2 ∂ θ ˙ 2 = 0 \begin{aligned} \dfrac{\partial |\vec{v}_{1b}|^2}{\partial r_1} &= 2r_1\dot{\theta}_1^2 & \dfrac{\partial |\vec{v}_{1b}|^2}{\partial r_2} &= 0 & \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \theta_1} &= 0 & \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \theta_2} &= 0\\ \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{r}_1} &= 2\dot{r}_1 & \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{r}_2} &= 0 & \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{\theta}_1} &= 2r_1^2\dot{\theta}_1 & \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{\theta}_2} &= 0\\ \dfrac{d}{dt} \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{r}_1} &= 2\ddot{r}_1 & \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{r}_2} &= 0 & \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{\theta}_1} &= 2r_1^2 \ddot{\theta}_1 + 4r_1\dot{r}_1\dot{\theta}_1 & \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{\theta}_2} &= 0 \end{aligned} ∂ r 1 ∂ ∣ v 1 b ∣ 2 ∂ r ˙ 1 ∂ ∣ v 1 b ∣ 2 d t d ∂ r ˙ 1 ∂ ∣ v 1 b ∣ 2 = 2 r 1 θ ˙ 1 2 = 2 r ˙ 1 = 2 r ¨ 1 ∂ r 2 ∂ ∣ v 1 b ∣ 2 ∂ r ˙ 2 ∂ ∣ v 1 b ∣ 2 d t d ∂ r ˙ 2 ∂ ∣ v 1 b ∣ 2 = 0 = 0 = 0 ∂ θ 1 ∂ ∣ v 1 b ∣ 2 ∂ θ ˙ 1 ∂ ∣ v 1 b ∣ 2 d t d ∂ θ ˙ 1 ∂ ∣ v 1 b ∣ 2 = 0 = 2 r 1 2 θ ˙ 1 = 2 r 1 2 θ ¨ 1 + 4 r 1 r ˙ 1 θ ˙ 1 ∂ θ 2 ∂ ∣ v 1 b ∣ 2 ∂ θ ˙ 2 ∂ ∣ v 1 b ∣ 2 d t d ∂ θ ˙ 2 ∂ ∣ v 1 b ∣ 2 = 0 = 0 = 0 Hence the negative functional derivatives are
δ ′ ∣ v ⃗ 1 b ∣ 2 δ ′ r 1 = d d t ∂ ∣ v ⃗ 1 b ∣ 2 ∂ r ˙ 1 − ∂ ∣ v ⃗ 1 b ∣ 2 ∂ r 1 δ ′ ∣ v ⃗ 1 b ∣ 2 δ ′ r 2 = d d t ∂ ∣ v ⃗ 1 b ∣ 2 ∂ r ˙ 2 − ∂ ∣ v ⃗ 1 b ∣ 2 ∂ r 2 δ ′ ∣ v ⃗ 1 b ∣ 2 δ ′ θ 1 = d d t ∂ ∣ v ⃗ 1 b ∣ 2 ∂ θ ˙ 1 − ∂ ∣ v ⃗ 1 b ∣ 2 ∂ θ 1 δ ′ ∣ v ⃗ 1 b ∣ 2 δ ′ θ 2 = d d t ∂ ∣ v ⃗ 1 b ∣ 2 ∂ θ ˙ 2 − ∂ ∣ v ⃗ 1 b ∣ 2 ∂ θ 2 = 2 r ¨ 1 − 2 r 1 θ ˙ 1 2 = 0 = 2 r 1 2 θ ¨ 1 + 4 r 1 r ˙ 1 θ ˙ 1 = 0. \begin{aligned} \dfrac{\delta' |\vec{v}_{1b}|^2}{\delta' r_1} &= \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{r}_1} - \dfrac{\partial |\vec{v}_{1b}|^2}{\partial r_1} & \dfrac{\delta' |\vec{v}_{1b}|^2}{\delta' r_2} &= \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{r}_2} - \dfrac{\partial |\vec{v}_{1b}|^2}{\partial r_2} & \dfrac{\delta' |\vec{v}_{1b}|^2}{\delta' \theta_1} &= \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{\theta}_1} - \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \theta_1} & \dfrac{\delta' |\vec{v}_{1b}|^2}{\delta' \theta_2} &= \dfrac{d}{dt}\dfrac{\partial |\vec{v}_{1b}|^2}{\partial \dot{\theta}_2} - \dfrac{\partial |\vec{v}_{1b}|^2}{\partial \theta_2}\\ &= 2\ddot{r}_1 - 2r_1\dot{\theta}_1^2 & &= 0 & &=2r_1^2\ddot{\theta}_1 + 4r_1\dot{r}_1\dot{\theta}_1 & &= 0. \end{aligned} δ ′ r 1 δ ′ ∣ v 1 b ∣ 2 = d t d ∂ r ˙ 1 ∂ ∣ v 1 b ∣ 2 − ∂ r 1 ∂ ∣ v 1 b ∣ 2 = 2 r ¨ 1 − 2 r 1 θ ˙ 1 2 δ ′ r 2 δ ′ ∣ v 1 b ∣ 2 = d t d ∂ r ˙ 2 ∂ ∣ v 1 b ∣ 2 − ∂ r 2 ∂ ∣ v 1 b ∣ 2 = 0 δ ′ θ 1 δ ′ ∣ v 1 b ∣ 2 = d t d ∂ θ ˙ 1 ∂ ∣ v 1 b ∣ 2 − ∂ θ 1 ∂ ∣ v 1 b ∣ 2 = 2 r 1 2 θ ¨ 1 + 4 r 1 r ˙ 1 θ ˙ 1 δ ′ θ 2 δ ′ ∣ v 1 b ∣ 2 = d t d ∂ θ ˙ 2 ∂ ∣ v 1 b ∣ 2 − ∂ θ 2 ∂ ∣ v 1 b ∣ 2 = 0 . Hence the partial and standard derivatives of the difference in the square of each bob's velocity is
∂ ∣ v ⃗ 2 b I ∣ 2 ∂ r 1 = 0 ∂ ∣ v ⃗ 2 b I ∣ 2 ∂ r 2 = 2 r 2 θ ˙ 2 2 ∂ ∣ v ⃗ 2 b I ∣ 2 ∂ θ 1 = 0 ∂ ∣ v ⃗ 2 b I ∣ 2 ∂ θ 2 = 0 ∂ ∣ v ⃗ 2 b I ∣ 2 ∂ r ˙ 1 = 0 ∂ ∣ v ⃗ 2 b I ∣ 2 ∂ r ˙ 2 = 2 r ˙ 2 ∂ ∣ v ⃗ 2 b I ∣ 2 ∂ θ ˙ 1 = 0 ∂ ∣ v ⃗ 2 b I ∣ 2 ∂ θ ˙ 2 = 2 r 2 2 θ ˙ 2 \begin{aligned} \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial r_1} &= 0 & \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial r_2} &= 2r_2\dot{\theta}_2^2 \\ \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \theta_1} &= 0 & \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \theta_2} &= 0 \\ \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{r}_1} &= 0 & \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{r}_2} &= 2\dot{r}_2 \\ \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{\theta}_1} &= 0 & \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{\theta}_2} &=2r_2^2\dot{\theta}_2 \end{aligned} ∂ r 1 ∂ ∣ v 2 b I ∣ 2 ∂ θ 1 ∂ ∣ v 2 b I ∣ 2 ∂ r ˙ 1 ∂ ∣ v 2 b I ∣ 2 ∂ θ ˙ 1 ∂ ∣ v 2 b I ∣ 2 = 0 = 0 = 0 = 0 ∂ r 2 ∂ ∣ v 2 b I ∣ 2 ∂ θ 2 ∂ ∣ v 2 b I ∣ 2 ∂ r ˙ 2 ∂ ∣ v 2 b I ∣ 2 ∂ θ ˙ 2 ∂ ∣ v 2 b I ∣ 2 = 2 r 2 θ ˙ 2 2 = 0 = 2 r ˙ 2 = 2 r 2 2 θ ˙ 2 d d t ∂ ∣ v ⃗ 2 b I ∣ 2 ∂ r ˙ 1 = 0 d d t ∂ ∣ v ⃗ 2 b I ∣ 2 ∂ r ˙ 2 = 2 r ¨ 2 d d t ∂ ∣ v ⃗ 2 b I ∣ 2 ∂ θ ˙ 1 = 0 d d t ∂ ∣ v ⃗ 2 b I ∣ 2 ∂ θ ˙ 2 = 2 r 2 2 θ ¨ 2 + 4 r 2 r ˙ 2 θ ˙ 2 . \begin{aligned} \dfrac{d}{dt} \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{r}_1} &= 0 & \dfrac{d}{dt} \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{r}_2} &= 2\ddot{r}_2 \\ \dfrac{d}{dt} \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{\theta}_1} &= 0 & \dfrac{d}{dt} \dfrac{\partial |\vec{v}_{2b}^I|^2}{\partial \dot{\theta}_2} &= 2r_2^2\ddot{\theta}_2 + 4r_2\dot{r}_2\dot{\theta}_2. \end{aligned} d t d ∂ r ˙ 1 ∂ ∣ v 2 b I ∣ 2 d t d ∂ θ ˙ 1 ∂ ∣ v 2 b I ∣ 2 = 0 = 0 d t d ∂ r ˙ 2 ∂ ∣ v 2 b I ∣ 2 d t d ∂ θ ˙ 2 ∂ ∣ v 2 b I ∣ 2 = 2 r ¨ 2 = 2 r 2 2 θ ¨ 2 + 4 r 2 r ˙ 2 θ ˙ 2 . Hence
δ r 1 ∣ v ⃗ 2 b I ∣ 2 = 0 δ r 2 ∣ v ⃗ 2 b I ∣ 2 = 2 ( r ¨ 2 − r 2 θ ˙ 2 2 ) δ θ 1 ∣ v ⃗ 2 b I ∣ 2 = 0 δ θ 2 ∣ v ⃗ 2 b I ∣ 2 = 2 r 2 2 θ ¨ 2 + 4 r 2 r ˙ 2 θ ˙ 2 . \begin{aligned} \delta_{r_1} |\vec{v}_{2b}^I|^2 &= 0 & \delta_{r_2} |\vec{v}_{2b}^I|^2 &= 2(\ddot{r}_2 - r_2\dot{\theta}_2^2) \\ \delta_{\theta_1} |\vec{v}_{2b}^I|^2 &=0 & \delta_{\theta_2} |\vec{v}_{2b}^I|^2 &= 2r_2^2 \ddot{\theta}_2 + 4r_2\dot{r}_2\dot{\theta}_2. \end{aligned} δ r 1 ∣ v 2 b I ∣ 2 δ θ 1 ∣ v 2 b I ∣ 2 = 0 = 0 δ r 2 ∣ v 2 b I ∣ 2 δ θ 2 ∣ v 2 b I ∣ 2 = 2 ( r ¨ 2 − r 2 θ ˙ 2 2 ) = 2 r 2 2 θ ¨ 2 + 4 r 2 r ˙ 2 θ ˙ 2 . ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ r 1 = 2 r 2 θ ˙ 1 θ ˙ 2 cos Δ + 2 r ˙ 2 θ ˙ 1 sin Δ ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ r 2 = 2 r 1 θ ˙ 1 θ ˙ 2 cos Δ − 2 r ˙ 1 θ ˙ 2 sin Δ ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ θ 1 = − 2 sin Δ ⋅ − 1 ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) + 2 cos Δ ⋅ − 1 ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ θ 2 = − 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) + 2 cos Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) = 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) − 2 cos Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) ∂ ∣ Δ v ⃗ 2 , 1 ∣ 2 ∂ r ˙ 1 = 2 r ˙ 2 cos Δ − 2 r 2 θ ˙ 2 sin Δ ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ r ˙ 2 = 2 r ˙ 1 cos Δ + 2 r 1 θ ˙ 1 sin Δ ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ θ ˙ 1 = 2 r 1 r 2 θ ˙ 2 cos Δ + 2 r 1 r ˙ 2 sin Δ ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ θ ˙ 2 = 2 r 1 r 2 θ ˙ 1 cos Δ − 2 r ˙ 1 r 2 sin Δ \begin{aligned} \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial r_1} &= 2r_2\dot{\theta}_1\dot{\theta}_2\cos{\Delta} + 2\dot{r}_2\dot{\theta}_1\sin{\Delta} & \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial r_2} &= 2r_1\dot{\theta}_1\dot{\theta}_2\cos{\Delta}-2\dot{r}_1\dot{\theta}_2\sin{\Delta}\\ \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \theta_1} &= -2\sin{\Delta}\cdot -1(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) + 2\cos{\Delta}\cdot -1(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2) & \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \theta_2} &= -2\sin{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) + 2\cos{\Delta}(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2) \\ &= 2\sin{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) - 2\cos{\Delta}(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2)\\ \dfrac{\partial |\Delta \vec{v}_{2,1}|^2}{\partial \dot{r}_1} &= 2\dot{r}_2\cos{\Delta} - 2r_2\dot{\theta}_2\sin{\Delta} & \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{r}_2} &= 2\dot{r}_1\cos{\Delta} + 2r_1\dot{\theta}_1\sin{\Delta} \\ \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{\theta}_1} &= 2r_1r_2\dot{\theta}_2\cos{\Delta} + 2r_1\dot{r}_2\sin{\Delta} & \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{\theta}_2} &=2r_1r_2\dot{\theta}_1\cos{\Delta} - 2\dot{r}_1r_2\sin{\Delta} \end{aligned} ∂ r 1 ∂ ∣ Δ v 2 , 1 I ∣ 2 ∂ θ 1 ∂ ∣ Δ v 2 , 1 I ∣ 2 ∂ r ˙ 1 ∂ ∣ Δ v 2 , 1 ∣ 2 ∂ θ ˙ 1 ∂ ∣ Δ v 2 , 1 I ∣ 2 = 2 r 2 θ ˙ 1 θ ˙ 2 cos Δ + 2 r ˙ 2 θ ˙ 1 sin Δ = − 2 sin Δ ⋅ − 1 ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) + 2 cos Δ ⋅ − 1 ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) = 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) − 2 cos Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) = 2 r ˙ 2 cos Δ − 2 r 2 θ ˙ 2 sin Δ = 2 r 1 r 2 θ ˙ 2 cos Δ + 2 r 1 r ˙ 2 sin Δ ∂ r 2 ∂ ∣ Δ v 2 , 1 I ∣ 2 ∂ θ 2 ∂ ∣ Δ v 2 , 1 I ∣ 2 ∂ r ˙ 2 ∂ ∣ Δ v 2 , 1 I ∣ 2 ∂ θ ˙ 2 ∂ ∣ Δ v 2 , 1 I ∣ 2 = 2 r 1 θ ˙ 1 θ ˙ 2 cos Δ − 2 r ˙ 1 θ ˙ 2 sin Δ = − 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) + 2 cos Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) = 2 r ˙ 1 cos Δ + 2 r 1 θ ˙ 1 sin Δ = 2 r 1 r 2 θ ˙ 1 cos Δ − 2 r ˙ 1 r 2 sin Δ Let us define Δ ˙ 1 = 2 θ ˙ 1 − θ ˙ 2 \dot{\Delta}_1 = 2\dot{\theta}_1 - \dot{\theta}_2 Δ ˙ 1 = 2 θ ˙ 1 − θ ˙ 2 and Δ ˙ 2 = 2 θ ˙ 2 − θ ˙ 1 \dot{\Delta}_2 = 2\dot{\theta}_2 - \dot{\theta}_1 Δ ˙ 2 = 2 θ ˙ 2 − θ ˙ 1 .
d d t ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ r ˙ 1 = 2 r ¨ 2 cos Δ − 2 r ˙ 2 Δ ˙ sin Δ − 2 r ˙ 2 θ ˙ 2 sin Δ − 2 r 2 θ ¨ 2 sin Δ − 2 r 2 θ ˙ 2 Δ ˙ cos Δ = 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 Δ ˙ ) − 2 sin Δ ( r ˙ 2 Δ ˙ + r ˙ 2 θ ˙ 2 + r 2 θ ¨ 2 ) = 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 Δ ˙ ) − 2 sin Δ ( r ˙ 2 ( 2 θ ˙ 2 − θ ˙ 1 ) + r 2 θ ¨ 2 ) = 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 Δ ˙ ) − 2 sin Δ ( r ˙ 2 Δ ˙ 2 + r 2 θ ¨ 2 ) d d t ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ r ˙ 2 = 2 r ¨ 1 cos Δ − 2 r ˙ 1 Δ ˙ sin Δ + 2 r ˙ 1 θ ˙ 1 sin Δ + 2 r 1 θ ¨ 1 sin Δ + 2 r 1 θ ˙ 1 Δ ˙ cos Δ = 2 cos Δ ( r ¨ 1 + r 1 θ ˙ 1 Δ ˙ ) + 2 sin Δ ( r 1 θ ¨ 1 + r ˙ 1 θ ˙ 1 − r ˙ 1 Δ ˙ ) = 2 cos Δ ( r ¨ 1 + r 1 θ ˙ 1 Δ ˙ ) + 2 sin Δ ( r 1 θ ¨ 1 + r ˙ 1 ( 2 θ ˙ 1 − θ ¨ 2 ) ) = 2 cos Δ ( r ¨ 1 + r 1 θ ˙ 1 Δ ˙ ) + 2 sin Δ ( r 1 θ ¨ 1 + r ˙ 1 Δ ˙ 1 ) d d t ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ θ ˙ 1 = 2 r ˙ 1 r 2 θ ˙ 2 cos Δ + 2 r 1 r ˙ 2 θ ˙ 2 cos Δ + 2 r 1 r 2 θ ¨ 2 cos Δ − 2 r 1 r 2 θ ˙ 2 Δ ˙ sin Δ + 2 r ˙ 1 r ˙ 2 sin Δ + 2 r 1 r ¨ 2 sin Δ + 2 r 1 r ˙ 2 Δ ˙ cos Δ = 2 cos Δ ( r ˙ 1 r 2 θ ˙ 2 + r 1 r ˙ 2 ( θ ˙ 2 + Δ ˙ ) + r 1 r 2 θ ¨ 2 ) + 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 Δ ˙ ) = 2 cos Δ ( r ˙ 1 r 2 θ ˙ 2 + r 1 r ˙ 2 Δ ˙ 2 + r 1 r 2 θ ¨ 2 ) + 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 Δ ˙ ) d d t ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ θ ˙ 2 = 2 r ˙ 1 r 2 θ ˙ 1 cos Δ + 2 r 1 r ˙ 2 θ ˙ 1 cos Δ + 2 r 1 r 2 θ ¨ 1 cos Δ − 2 r 1 r 2 θ ˙ 1 Δ ˙ sin Δ − 2 r ¨ 1 r 2 sin Δ − 2 r ˙ 1 r ˙ 2 sin Δ − 2 r ˙ 1 r 2 Δ ˙ cos Δ = 2 cos Δ ( r ˙ 1 r 2 ( θ ˙ 1 − Δ ˙ ) + r 1 r ˙ 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) − 2 sin Δ ( r 1 r 2 θ ˙ 1 Δ ˙ + r ¨ 1 r 2 + r ˙ 1 r ˙ 2 ) = 2 cos Δ ( r ˙ 1 r 2 Δ ˙ 1 + r 1 r ˙ 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) − 2 sin Δ ( r 1 r 2 θ ˙ 1 Δ ˙ + r ¨ 1 r 2 + r ˙ 1 r ˙ 2 ) . \begin{aligned} \dfrac{d}{dt} \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{r}_1} &= 2\ddot{r}_2\cos{\Delta} - 2\dot{r}_2\dot{\Delta}\sin{\Delta} - 2\dot{r}_2\dot{\theta}_2\sin{\Delta} - 2r_2\ddot{\theta}_2\sin{\Delta} - 2r_2\dot{\theta}_2\dot{\Delta}\cos{\Delta} \\ &= 2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2\dot{\Delta}) - 2\sin{\Delta}(\dot{r}_2\dot{\Delta} + \dot{r}_2\dot{\theta}_2+r_2\ddot{\theta}_2)\\ &= 2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2\dot{\Delta}) - 2\sin{\Delta}(\dot{r}_2(2\dot{\theta}_2-\dot{\theta}_1)+r_2\ddot{\theta}_2)\\ &= 2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2\dot{\Delta}) - 2\sin{\Delta}(\dot{r}_2\dot{\Delta}_2+r_2\ddot{\theta}_2)\\ \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{r}_2} &= 2\ddot{r}_1 \cos{\Delta} -2\dot{r}_1\dot{\Delta}\sin{\Delta} + 2\dot{r}_1\dot{\theta}_1\sin{\Delta} + 2r_1\ddot{\theta}_1\sin{\Delta} + 2r_1\dot{\theta}_1\dot{\Delta}\cos{\Delta} \\ &= 2\cos{\Delta}(\ddot{r}_1 + r_1\dot{\theta}_1 \dot{\Delta}) + 2\sin{\Delta}(r_1\ddot{\theta}_1 + \dot{r}_1\dot{\theta}_1 - \dot{r}_1\dot{\Delta})\\ &= 2\cos{\Delta}(\ddot{r}_1 + r_1\dot{\theta}_1 \dot{\Delta}) + 2\sin{\Delta}(r_1\ddot{\theta}_1 + \dot{r}_1(2\dot{\theta}_1 - \ddot{\theta}_2))\\ &= 2\cos{\Delta}(\ddot{r}_1 + r_1\dot{\theta}_1 \dot{\Delta}) + 2\sin{\Delta}(r_1\ddot{\theta}_1 + \dot{r}_1\dot{\Delta}_1)\\ \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{\theta}_1} &= 2\dot{r}_1r_2\dot{\theta}_2\cos{\Delta} + 2r_1\dot{r}_2\dot{\theta}_2\cos{\Delta} + 2r_1r_2\ddot{\theta}_2\cos{\Delta} - 2r_1r_2\dot{\theta}_2\dot{\Delta}\sin{\Delta} + 2\dot{r}_1\dot{r}_2\sin{\Delta} + 2r_1\ddot{r}_2\sin{\Delta} + 2r_1\dot{r}_2\dot{\Delta}\cos{\Delta} \\ &= 2\cos{\Delta}(\dot{r}_1r_2\dot{\theta}_2 + r_1\dot{r}_2 (\dot{\theta}_2+\dot{\Delta})+r_1r_2\ddot{\theta}_2) +2\sin{\Delta}(\dot{r}_1\dot{r}_2+r_1\ddot{r}_2-r_1r_2\dot{\theta}_2\dot{\Delta})\\ &= 2\cos{\Delta}(\dot{r}_1r_2\dot{\theta}_2 + r_1\dot{r}_2 \dot{\Delta}_2+r_1r_2\ddot{\theta}_2) +2\sin{\Delta}(\dot{r}_1\dot{r}_2+r_1\ddot{r}_2-r_1r_2\dot{\theta}_2\dot{\Delta})\\ \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{\theta}_2} &= 2\dot{r}_1r_2\dot{\theta}_1\cos{\Delta} + 2r_1\dot{r}_2\dot{\theta}_1\cos{\Delta} + 2r_1r_2\ddot{\theta}_1\cos{\Delta} - 2r_1r_2\dot{\theta}_1\dot{\Delta}\sin{\Delta} - 2\ddot{r}_1r_2\sin{\Delta} - 2\dot{r}_1\dot{r}_2\sin{\Delta} - 2\dot{r}_1r_2\dot{\Delta}\cos{\Delta} \\ &=2\cos{\Delta}(\dot{r}_1r_2(\dot{\theta}_1-\dot{\Delta})+r_1\dot{r}_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)-2\sin{\Delta}(r_1r_2\dot{\theta}_1\dot{\Delta} + \ddot{r}_1r_2 + \dot{r}_1\dot{r}_2) \\ &=2\cos{\Delta}(\dot{r}_1r_2\dot{\Delta}_1+r_1\dot{r}_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)-2\sin{\Delta}(r_1r_2\dot{\theta}_1\dot{\Delta} + \ddot{r}_1r_2 + \dot{r}_1\dot{r}_2). \end{aligned} d t d ∂ r ˙ 1 ∂ ∣ Δ v 2 , 1 I ∣ 2 d t d ∂ r ˙ 2 ∂ ∣ Δ v 2 , 1 I ∣ 2 d t d ∂ θ ˙ 1 ∂ ∣ Δ v 2 , 1 I ∣ 2 d t d ∂ θ ˙ 2 ∂ ∣ Δ v 2 , 1 I ∣ 2 = 2 r ¨ 2 cos Δ − 2 r ˙ 2 Δ ˙ sin Δ − 2 r ˙ 2 θ ˙ 2 sin Δ − 2 r 2 θ ¨ 2 sin Δ − 2 r 2 θ ˙ 2 Δ ˙ cos Δ = 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 Δ ˙ ) − 2 sin Δ ( r ˙ 2 Δ ˙ + r ˙ 2 θ ˙ 2 + r 2 θ ¨ 2 ) = 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 Δ ˙ ) − 2 sin Δ ( r ˙ 2 ( 2 θ ˙ 2 − θ ˙ 1 ) + r 2 θ ¨ 2 ) = 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 Δ ˙ ) − 2 sin Δ ( r ˙ 2 Δ ˙ 2 + r 2 θ ¨ 2 ) = 2 r ¨ 1 cos Δ − 2 r ˙ 1 Δ ˙ sin Δ + 2 r ˙ 1 θ ˙ 1 sin Δ + 2 r 1 θ ¨ 1 sin Δ + 2 r 1 θ ˙ 1 Δ ˙ cos Δ = 2 cos Δ ( r ¨ 1 + r 1 θ ˙ 1 Δ ˙ ) + 2 sin Δ ( r 1 θ ¨ 1 + r ˙ 1 θ ˙ 1 − r ˙ 1 Δ ˙ ) = 2 cos Δ ( r ¨ 1 + r 1 θ ˙ 1 Δ ˙ ) + 2 sin Δ ( r 1 θ ¨ 1 + r ˙ 1 ( 2 θ ˙ 1 − θ ¨ 2 ) ) = 2 cos Δ ( r ¨ 1 + r 1 θ ˙ 1 Δ ˙ ) + 2 sin Δ ( r 1 θ ¨ 1 + r ˙ 1 Δ ˙ 1 ) = 2 r ˙ 1 r 2 θ ˙ 2 cos Δ + 2 r 1 r ˙ 2 θ ˙ 2 cos Δ + 2 r 1 r 2 θ ¨ 2 cos Δ − 2 r 1 r 2 θ ˙ 2 Δ ˙ sin Δ + 2 r ˙ 1 r ˙ 2 sin Δ + 2 r 1 r ¨ 2 sin Δ + 2 r 1 r ˙ 2 Δ ˙ cos Δ = 2 cos Δ ( r ˙ 1 r 2 θ ˙ 2 + r 1 r ˙ 2 ( θ ˙ 2 + Δ ˙ ) + r 1 r 2 θ ¨ 2 ) + 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 Δ ˙ ) = 2 cos Δ ( r ˙ 1 r 2 θ ˙ 2 + r 1 r ˙ 2 Δ ˙ 2 + r 1 r 2 θ ¨ 2 ) + 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 Δ ˙ ) = 2 r ˙ 1 r 2 θ ˙ 1 cos Δ + 2 r 1 r ˙ 2 θ ˙ 1 cos Δ + 2 r 1 r 2 θ ¨ 1 cos Δ − 2 r 1 r 2 θ ˙ 1 Δ ˙ sin Δ − 2 r ¨ 1 r 2 sin Δ − 2 r ˙ 1 r ˙ 2 sin Δ − 2 r ˙ 1 r 2 Δ ˙ cos Δ = 2 cos Δ ( r ˙ 1 r 2 ( θ ˙ 1 − Δ ˙ ) + r 1 r ˙ 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) − 2 sin Δ ( r 1 r 2 θ ˙ 1 Δ ˙ + r ¨ 1 r 2 + r ˙ 1 r ˙ 2 ) = 2 cos Δ ( r ˙ 1 r 2 Δ ˙ 1 + r 1 r ˙ 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) − 2 sin Δ ( r 1 r 2 θ ˙ 1 Δ ˙ + r ¨ 1 r 2 + r ˙ 1 r ˙ 2 ) . Hence the negative functional derivative for r 1 r_1 r 1 is
δ r 1 ′ ∣ Δ v ⃗ 2 , 1 I ∣ 2 = d d t ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ r ˙ 1 − ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ r 1 = 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 Δ ˙ ) − 2 sin Δ ( r ˙ 2 Δ ˙ 2 + r 2 θ ¨ 2 ) − ( 2 r 2 θ ˙ 1 θ ˙ 2 cos Δ + 2 r ˙ 2 θ ˙ 1 sin Δ ) = 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 ( Δ ˙ + θ ˙ 1 ) ) − 2 sin Δ ( r ˙ 2 ( Δ ˙ 2 + θ ˙ 1 ) + r 2 θ ¨ 2 ) . \begin{aligned} \delta'_{r_1} |\Delta \vec{v}_{2,1}^I|^2 &= \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{r}_1} - \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial r_1} \\ &= 2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2\dot{\Delta}) - 2\sin{\Delta}(\dot{r}_2\dot{\Delta}_2+r_2\ddot{\theta}_2) - \left(2r_2\dot{\theta}_1\dot{\theta}_2\cos{\Delta} + 2\dot{r}_2\dot{\theta}_1\sin{\Delta}\right) \\ &= 2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2(\dot{\Delta}+\dot{\theta}_1)) - 2\sin{\Delta} (\dot{r}_2(\dot{\Delta}_2+\dot{\theta}_1)+r_2\ddot{\theta}_2). \end{aligned} δ r 1 ′ ∣ Δ v 2 , 1 I ∣ 2 = d t d ∂ r ˙ 1 ∂ ∣ Δ v 2 , 1 I ∣ 2 − ∂ r 1 ∂ ∣ Δ v 2 , 1 I ∣ 2 = 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 Δ ˙ ) − 2 sin Δ ( r ˙ 2 Δ ˙ 2 + r 2 θ ¨ 2 ) − ( 2 r 2 θ ˙ 1 θ ˙ 2 cos Δ + 2 r ˙ 2 θ ˙ 1 sin Δ ) = 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 ( Δ ˙ + θ ˙ 1 ) ) − 2 sin Δ ( r ˙ 2 ( Δ ˙ 2 + θ ˙ 1 ) + r 2 θ ¨ 2 ) . Where Δ ˙ + θ ˙ 1 = θ ˙ 2 − θ ˙ 1 + θ ˙ 1 = θ ˙ 2 \dot{\Delta} + \dot{\theta}_1 = \dot{\theta}_2 - \dot{\theta}_1 + \dot{\theta}_1 = \dot{\theta}_2 Δ ˙ + θ ˙ 1 = θ ˙ 2 − θ ˙ 1 + θ ˙ 1 = θ ˙ 2 and Δ ˙ 2 + θ ˙ 1 = 2 θ ˙ 2 − θ ˙ 1 + θ ˙ 1 = 2 θ ˙ 2 \dot{\Delta}_2 + \dot{\theta}_1 = 2\dot{\theta}_2 - \dot{\theta}_1 + \dot{\theta}_1 = 2\dot{\theta}_2 Δ ˙ 2 + θ ˙ 1 = 2 θ ˙ 2 − θ ˙ 1 + θ ˙ 1 = 2 θ ˙ 2 . (Confirmed with SymPy)
δ r 1 ′ ∣ Δ v ⃗ 2 , 1 I ∣ 2 = 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 2 ) − 2 sin Δ ( 2 r ˙ 2 θ ˙ 2 + r 2 θ ¨ 2 ) . \begin{aligned} \delta'_{r_1} |\Delta \vec{v}_{2,1}^I|^2 &= 2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2^2) - 2\sin{\Delta} (2\dot{r}_2\dot{\theta}_2+r_2\ddot{\theta}_2). \end{aligned} δ r 1 ′ ∣ Δ v 2 , 1 I ∣ 2 = 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 2 ) − 2 sin Δ ( 2 r ˙ 2 θ ˙ 2 + r 2 θ ¨ 2 ) . As for r 2 r_2 r 2 (checked)
δ r 2 ′ ∣ Δ v ⃗ 2 , 1 I ∣ 2 = d d t ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ r ˙ 2 − ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ r 2 = 2 cos Δ ( r ¨ 1 + r 1 θ ˙ 1 Δ ˙ ) + 2 sin Δ ( r 1 θ ¨ 1 + r ˙ 1 Δ ˙ 1 ) − [ 2 r 1 θ ˙ 1 θ ˙ 2 cos Δ − 2 r ˙ 1 θ ˙ 2 sin Δ ] = 2 cos Δ ( r ¨ 1 + r 1 θ ˙ 1 ( Δ ˙ − θ ˙ 2 ) ) + 2 sin Δ ( r 1 θ ¨ 1 + r ˙ 1 ( Δ ˙ 1 + θ ˙ 2 ) ) . \begin{aligned} \delta'_{r_2} |\Delta \vec{v}_{2,1}^I|^2 &= \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{r}_2} - \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial r_2} \\ &= 2\cos{\Delta}(\ddot{r}_1 + r_1\dot{\theta}_1 \dot{\Delta}) + 2\sin{\Delta}(r_1\ddot{\theta}_1 + \dot{r}_1\dot{\Delta}_1) - \left[2r_1\dot{\theta}_1\dot{\theta}_2\cos{\Delta}-2\dot{r}_1\dot{\theta}_2\sin{\Delta}\right]\\ &= 2\cos{\Delta}(\ddot{r}_1 + r_1\dot{\theta}_1( \dot{\Delta}-\dot{\theta}_2))+2\sin{\Delta}(r_1\ddot{\theta}_1 + \dot{r}_1(\dot{\Delta}_1+\dot{\theta}_2)). \end{aligned} δ r 2 ′ ∣ Δ v 2 , 1 I ∣ 2 = d t d ∂ r ˙ 2 ∂ ∣ Δ v 2 , 1 I ∣ 2 − ∂ r 2 ∂ ∣ Δ v 2 , 1 I ∣ 2 = 2 cos Δ ( r ¨ 1 + r 1 θ ˙ 1 Δ ˙ ) + 2 sin Δ ( r 1 θ ¨ 1 + r ˙ 1 Δ ˙ 1 ) − [ 2 r 1 θ ˙ 1 θ ˙ 2 cos Δ − 2 r ˙ 1 θ ˙ 2 sin Δ ] = 2 cos Δ ( r ¨ 1 + r 1 θ ˙ 1 ( Δ ˙ − θ ˙ 2 ) ) + 2 sin Δ ( r 1 θ ¨ 1 + r ˙ 1 ( Δ ˙ 1 + θ ˙ 2 ) ) . Hence Δ ˙ − θ ˙ 2 = θ ˙ 2 − θ ˙ 1 − θ ˙ 2 = − θ ˙ 1 \dot{\Delta}-\dot{\theta}_2 = \dot{\theta}_2-\dot{\theta}_1-\dot{\theta}_2 = -\dot{\theta}_1 Δ ˙ − θ ˙ 2 = θ ˙ 2 − θ ˙ 1 − θ ˙ 2 = − θ ˙ 1 and Δ ˙ 1 + θ ˙ 2 = 2 θ ˙ 1 − θ ˙ 2 + θ ˙ 2 = 2 θ ˙ 1 \dot{\Delta}_1 + \dot{\theta}_2 = 2\dot{\theta}_1 - \dot{\theta}_2 + \dot{\theta}_2 = 2\dot{\theta}_1 Δ ˙ 1 + θ ˙ 2 = 2 θ ˙ 1 − θ ˙ 2 + θ ˙ 2 = 2 θ ˙ 1 .
δ r 2 ′ ∣ Δ v ⃗ 2 , 1 I ∣ 2 = 2 cos Δ ( r ¨ 1 − r 1 θ ˙ 1 2 ) + 2 sin Δ ( r 1 θ ¨ 1 + 2 r ˙ 1 θ ˙ 1 ) . \begin{aligned} \delta'_{r_2} |\Delta \vec{v}_{2,1}^I|^2 &= 2\cos{\Delta}(\ddot{r}_1 - r_1\dot{\theta}_1^2)+2\sin{\Delta}(r_1\ddot{\theta}_1 + 2\dot{r}_1\dot{\theta}_1). \end{aligned} δ r 2 ′ ∣ Δ v 2 , 1 I ∣ 2 = 2 cos Δ ( r ¨ 1 − r 1 θ ˙ 1 2 ) + 2 sin Δ ( r 1 θ ¨ 1 + 2 r ˙ 1 θ ˙ 1 ) . As for θ 1 \theta_1 θ 1 (confirmed by SymPy)
δ θ 1 ′ ∣ Δ v ⃗ 2 , 1 I ∣ 2 = d d t ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ θ ˙ 1 − ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ θ 1 = 2 cos Δ ( r ˙ 1 r 2 θ ˙ 2 + r 1 r ˙ 2 Δ ˙ 2 + r 1 r 2 θ ¨ 2 ) + 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 Δ ˙ ) − [ 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) − 2 cos Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) ] = 2 cos Δ ( r ˙ 1 r 2 ( θ ˙ 2 − θ ˙ 2 ) + r 1 r ˙ 2 ( Δ ˙ 2 + θ ˙ 1 ) + r 1 r 2 θ ¨ 2 ) + 2 sin Δ ( r ˙ 1 r ˙ 2 − r ˙ 1 r ˙ 2 + r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 ( Δ ˙ + θ ˙ 1 ) ) = 2 cos Δ ( 2 r 1 r ˙ 2 θ ˙ 2 + r 1 r 2 θ ¨ 2 ) + 2 sin Δ ( r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 2 ) . \begin{aligned} \delta'_{\theta_1} |\Delta \vec{v}_{2,1}^I|^2 &= \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{\theta}_1} - \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \theta_1} \\ &= 2\cos{\Delta}(\dot{r}_1r_2\dot{\theta}_2 + r_1\dot{r}_2 \dot{\Delta}_2+r_1r_2\ddot{\theta}_2) +2\sin{\Delta}(\dot{r}_1\dot{r}_2+r_1\ddot{r}_2-r_1r_2\dot{\theta}_2\dot{\Delta}) - \left[2\sin{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) - 2\cos{\Delta}(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2)\right] \\ &= 2\cos{\Delta}(\dot{r}_1r_2(\dot{\theta}_2 - \dot{\theta}_2)+ r_1\dot{r}_2 (\dot{\Delta}_2+\dot{\theta}_1)+r_1r_2\ddot{\theta}_2) +2\sin{\Delta}(\dot{r}_1\dot{r}_2-\dot{r}_1\dot{r}_2+r_1\ddot{r}_2-r_1r_2\dot{\theta}_2(\dot{\Delta}+\dot{\theta}_1)) \\ &= 2\cos{\Delta}(2r_1\dot{r}_2\dot{\theta}_2+r_1r_2\ddot{\theta}_2) +2\sin{\Delta}(r_1\ddot{r}_2-r_1r_2\dot{\theta}_2^2). \end{aligned} δ θ 1 ′ ∣ Δ v 2 , 1 I ∣ 2 = d t d ∂ θ ˙ 1 ∂ ∣ Δ v 2 , 1 I ∣ 2 − ∂ θ 1 ∂ ∣ Δ v 2 , 1 I ∣ 2 = 2 cos Δ ( r ˙ 1 r 2 θ ˙ 2 + r 1 r ˙ 2 Δ ˙ 2 + r 1 r 2 θ ¨ 2 ) + 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 Δ ˙ ) − [ 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) − 2 cos Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) ] = 2 cos Δ ( r ˙ 1 r 2 ( θ ˙ 2 − θ ˙ 2 ) + r 1 r ˙ 2 ( Δ ˙ 2 + θ ˙ 1 ) + r 1 r 2 θ ¨ 2 ) + 2 sin Δ ( r ˙ 1 r ˙ 2 − r ˙ 1 r ˙ 2 + r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 ( Δ ˙ + θ ˙ 1 ) ) = 2 cos Δ ( 2 r 1 r ˙ 2 θ ˙ 2 + r 1 r 2 θ ¨ 2 ) + 2 sin Δ ( r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 2 ) . As for θ 2 \theta_2 θ 2 (correct, checked with SymPy)
δ θ 2 ′ ∣ Δ v ⃗ 2 , 1 I ∣ 2 = d d t ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ θ ˙ 2 − ∂ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ∂ θ 2 = 2 cos Δ ( r ˙ 1 r 2 Δ ˙ 1 + r 1 r ˙ 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) − 2 sin Δ ( r 1 r 2 θ ˙ 1 Δ ˙ + r ¨ 1 r 2 + r ˙ 1 r ˙ 2 ) − [ − 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) + 2 cos Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) ] = 2 cos Δ ( r ˙ 1 r 2 ( Δ ˙ 1 + θ ˙ 2 ) + r 1 r ˙ 2 ( θ ˙ 1 − θ ˙ 1 ) + r 1 r 2 θ ¨ 1 ) + 2 sin Δ ( r 1 r 2 θ ˙ 1 ( θ ˙ 2 − Δ ˙ ) − r ¨ 1 r 2 + r ˙ 1 r ˙ 2 − r ˙ 1 r ˙ 2 ) = 2 cos Δ ( 2 r ˙ 1 r 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) + 2 sin Δ ( r 1 r 2 θ ˙ 1 ( θ ˙ 2 − ( θ ˙ 2 − θ ˙ 1 ) ) − r ¨ 1 r 2 ) = 2 cos Δ ( 2 r ˙ 1 r 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) + 2 sin Δ ( r 1 r 2 θ ˙ 1 2 − r ¨ 1 r 2 ) . \begin{aligned} \delta'_{\theta_2} |\Delta \vec{v}_{2,1}^I|^2 &= \dfrac{d}{dt}\dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \dot{\theta}_2} - \dfrac{\partial |\Delta \vec{v}_{2,1}^I|^2}{\partial \theta_2} \\ &= 2\cos{\Delta}(\dot{r}_1r_2\dot{\Delta}_1+r_1\dot{r}_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)-2\sin{\Delta}(r_1r_2\dot{\theta}_1\dot{\Delta} + \ddot{r}_1r_2 + \dot{r}_1\dot{r}_2) - \left[-2\sin{\Delta}(\dot{r}_1\dot{r}_2 + r_1r_2\dot{\theta}_1\dot{\theta}_2) + 2\cos{\Delta}(r_1\dot{r}_2\dot{\theta}_1-\dot{r}_1r_2\dot{\theta}_2)\right] \\ &= 2\cos{\Delta}(\dot{r}_1r_2(\dot{\Delta}_1+\dot{\theta}_2)+r_1\dot{r}_2(\dot{\theta}_1-\dot{\theta}_1)+r_1r_2\ddot{\theta}_1)+2\sin{\Delta}(r_1r_2\dot{\theta}_1(\dot{\theta}_2-\dot{\Delta}) - \ddot{r}_1r_2 + \dot{r}_1\dot{r}_2-\dot{r}_1\dot{r}_2) \\ &= 2\cos{\Delta}(2\dot{r}_1r_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)+2\sin{\Delta}(r_1r_2\dot{\theta}_1(\dot{\theta}_2-(\dot{\theta}_2-\dot{\theta}_1))-\ddot{r}_1r_2) \\ &= 2\cos{\Delta}(2\dot{r}_1r_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)+2\sin{\Delta}(r_1r_2\dot{\theta}_1^2-\ddot{r}_1r_2). \end{aligned} δ θ 2 ′ ∣ Δ v 2 , 1 I ∣ 2 = d t d ∂ θ ˙ 2 ∂ ∣ Δ v 2 , 1 I ∣ 2 − ∂ θ 2 ∂ ∣ Δ v 2 , 1 I ∣ 2 = 2 cos Δ ( r ˙ 1 r 2 Δ ˙ 1 + r 1 r ˙ 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) − 2 sin Δ ( r 1 r 2 θ ˙ 1 Δ ˙ + r ¨ 1 r 2 + r ˙ 1 r ˙ 2 ) − [ − 2 sin Δ ( r ˙ 1 r ˙ 2 + r 1 r 2 θ ˙ 1 θ ˙ 2 ) + 2 cos Δ ( r 1 r ˙ 2 θ ˙ 1 − r ˙ 1 r 2 θ ˙ 2 ) ] = 2 cos Δ ( r ˙ 1 r 2 ( Δ ˙ 1 + θ ˙ 2 ) + r 1 r ˙ 2 ( θ ˙ 1 − θ ˙ 1 ) + r 1 r 2 θ ¨ 1 ) + 2 sin Δ ( r 1 r 2 θ ˙ 1 ( θ ˙ 2 − Δ ˙ ) − r ¨ 1 r 2 + r ˙ 1 r ˙ 2 − r ˙ 1 r ˙ 2 ) = 2 cos Δ ( 2 r ˙ 1 r 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) + 2 sin Δ ( r 1 r 2 θ ˙ 1 ( θ ˙ 2 − ( θ ˙ 2 − θ ˙ 1 ) ) − r ¨ 1 r 2 ) = 2 cos Δ ( 2 r ˙ 1 r 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) + 2 sin Δ ( r 1 r 2 θ ˙ 1 2 − r ¨ 1 r 2 ) . It is important to note that δ ′ f ( q i ) δ ′ q i = − ∂ f ∂ q i \dfrac{\delta' f(q_i)}{\delta' q_i} = -\dfrac{\partial f}{\partial q_i} δ ′ q i δ ′ f ( q i ) = − ∂ q i ∂ f and of course if a term does not depend on q i q_i q i or q ˙ i \dot{q}_i q ˙ i its functional derivative with respect to q i q_i q i is zero. Hence
δ r 1 ′ L = M 1 2 δ r 1 ′ ∣ v ⃗ 1 b ∣ 2 + M 2 2 δ r 1 ′ ∣ v ⃗ 2 b I ∣ 2 + μ 2 2 δ r 1 ′ ∣ Δ v ⃗ 2 , 1 I ∣ 2 + μ 1 g sin θ 1 + k 1 ( r 1 − l 1 ) \begin{aligned} \delta'_{r_1} \mathcal{L} &= \dfrac{M_1}{2} \delta'_{r_1} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2} \delta'_{r_1}|\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}\delta'_{r_1} |\Delta \vec{v}_{2,1}^I|^2 + \mu_1 g\sin{\theta_1} + k_1(r_1-l_1) \end{aligned} δ r 1 ′ L = 2 M 1 δ r 1 ′ ∣ v 1 b ∣ 2 + 2 M 2 δ r 1 ′ ∣ v 2 b I ∣ 2 + 2 μ 2 δ r 1 ′ ∣ Δ v 2 , 1 I ∣ 2 + μ 1 g sin θ 1 + k 1 ( r 1 − l 1 ) We have deliberately ignored the m 2 g r 2 sin θ 2 m_2gr_2\sin{\theta_2} m 2 g r 2 sin θ 2 and − k 2 ( r 2 − l 2 ) 2 2 -\dfrac{k_2(r_2-l_2)^2}{2} − 2 k 2 ( r 2 − l 2 ) 2 as they are independent of r 1 r_1 r 1 .
δ r 1 ′ L = M 1 2 ( 2 r ¨ 1 − 2 r 1 θ ˙ 1 2 ) + M 2 2 ⋅ 0 + μ 2 2 ( 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 ( Δ ˙ + θ ˙ 1 ) ) − 2 sin Δ ( r ˙ 2 ( Δ ˙ 2 + θ ˙ 1 ) + r 2 θ ¨ 2 ) ) + μ 1 g sin θ 1 + k 1 ( r 1 − l 1 ) = M 1 ( r ¨ 1 − r 1 θ ˙ 1 2 ) + μ 2 ( cos Δ ( r ¨ 2 − r 2 θ ˙ 2 ( Δ ˙ + θ ˙ 1 ) ) − sin Δ ( r ˙ 2 ( Δ ˙ 2 + θ ˙ 1 ) + r 2 θ ¨ 2 ) ) + μ 1 g sin θ 1 + k 1 ( r 1 − l 1 ) = M 1 ( r ¨ 1 − r 1 θ ˙ 1 2 ) + μ 2 ( cos Δ ( r ¨ 2 − r 2 θ ˙ 2 2 ) − sin Δ ( 2 r ˙ 2 θ ˙ 2 + r 2 θ ¨ 2 ) ) + μ 1 g sin θ 1 + k 1 ( r 1 − l 1 ) . \begin{aligned} \delta'_{r_1} \mathcal{L} &= \dfrac{M_1}{2}(2\ddot{r}_1-2r_1\dot{\theta}_1^2) + \dfrac{M_2}{2} \cdot 0 + \dfrac{\mu_2}{2} \left(2\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2(\dot{\Delta}+\dot{\theta}_1)) - 2\sin{\Delta} (\dot{r}_2(\dot{\Delta}_2+\dot{\theta}_1)+r_2\ddot{\theta}_2)\right) + \mu_1g\sin{\theta_1} + k_1(r_1-l_1) \\ &= M_1(\ddot{r}_1-r_1\dot{\theta}_1^2) + \mu_2 \left(\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2(\dot{\Delta}+\dot{\theta}_1)) - \sin{\Delta} (\dot{r}_2(\dot{\Delta}_2+\dot{\theta}_1)+r_2\ddot{\theta}_2)\right) + \mu_1g\sin{\theta_1} + k_1(r_1-l_1) \\ &= M_1(\ddot{r}_1-r_1\dot{\theta}_1^2) + \mu_2 \left(\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2^2) - \sin{\Delta} (2\dot{r}_2\dot{\theta}_2+r_2\ddot{\theta}_2)\right) + \mu_1g\sin{\theta_1} + k_1(r_1-l_1). \end{aligned} δ r 1 ′ L = 2 M 1 ( 2 r ¨ 1 − 2 r 1 θ ˙ 1 2 ) + 2 M 2 ⋅ 0 + 2 μ 2 ( 2 cos Δ ( r ¨ 2 − r 2 θ ˙ 2 ( Δ ˙ + θ ˙ 1 ) ) − 2 sin Δ ( r ˙ 2 ( Δ ˙ 2 + θ ˙ 1 ) + r 2 θ ¨ 2 ) ) + μ 1 g sin θ 1 + k 1 ( r 1 − l 1 ) = M 1 ( r ¨ 1 − r 1 θ ˙ 1 2 ) + μ 2 ( cos Δ ( r ¨ 2 − r 2 θ ˙ 2 ( Δ ˙ + θ ˙ 1 ) ) − sin Δ ( r ˙ 2 ( Δ ˙ 2 + θ ˙ 1 ) + r 2 θ ¨ 2 ) ) + μ 1 g sin θ 1 + k 1 ( r 1 − l 1 ) = M 1 ( r ¨ 1 − r 1 θ ˙ 1 2 ) + μ 2 ( cos Δ ( r ¨ 2 − r 2 θ ˙ 2 2 ) − sin Δ ( 2 r ˙ 2 θ ˙ 2 + r 2 θ ¨ 2 ) ) + μ 1 g sin θ 1 + k 1 ( r 1 − l 1 ) . The generalized dissipation force canonical to r 1 r_1 r 1 is hence
Q r 1 = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) v ⃗ 1 b ⋅ ∂ r ⃗ 1 b ∂ r 1 − ( b 1 r + c 1 r ∣ v ⃗ 1 r ∣ ) v ⃗ 1 r ⋅ ∂ r ⃗ 1 r ∂ r 1 − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) v ⃗ 2 b ⋅ ∂ r ⃗ 2 b ∂ r 1 − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) v ⃗ 2 r ⋅ ∂ r ⃗ 2 r ∂ r 1 = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ⋅ [ cos θ 1 sin θ 1 ] − ( b 1 r + c 1 r ∣ v ⃗ 1 r ∣ ) 1 2 [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ⋅ 1 2 [ cos θ 1 sin θ 1 ] − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ] ⋅ [ cos θ 1 sin θ 1 ] − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 2 ] ⋅ [ cos θ 1 sin θ 1 ] = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) [ r ˙ 1 cos 2 θ 1 − r 1 θ ˙ 1 sin θ 1 cos θ 1 + r ˙ 1 sin 2 θ 1 + r 1 θ ˙ 1 cos θ 1 sin θ 1 ] − 1 4 ( b 1 r + c 1 r ∣ v ⃗ 1 r ∣ ) [ r ˙ 1 cos 2 θ 1 − r 1 θ ˙ 1 sin θ 1 cos θ 1 + r ˙ 1 sin 2 θ 1 + r 1 θ ˙ 1 cos θ 1 sin θ 1 ] − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r ˙ 1 cos 2 θ 1 − r 1 θ ˙ 1 sin θ 1 cos θ 1 + r ˙ 2 cos θ 1 cos θ 2 − r 2 θ ˙ 2 cos θ 1 sin θ 2 + r ˙ 1 sin 2 θ 1 + r 1 θ ˙ 1 cos θ 1 sin θ 1 + r ˙ 2 sin θ 1 sin θ 2 + r 2 θ ˙ 2 sin θ 1 cos θ 2 ] − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r ˙ 1 cos 2 θ 1 − r 1 θ ˙ 1 sin θ 1 cos θ 1 + 1 2 [ r ˙ 2 cos θ 1 cos θ 2 − r 2 θ ˙ 2 cos θ 1 sin θ 2 ] + r ˙ 1 sin 2 θ 1 + r 1 θ ˙ 1 cos θ 1 sin θ 1 + r ˙ 2 sin θ 1 sin θ 2 + r 2 θ ˙ 2 sin θ 1 cos θ 2 2 ] = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) [ r ˙ 1 ( cos 2 θ 1 + sin 2 θ 1 ) + r 1 θ ˙ 1 ( − sin θ 1 cos θ 1 + cos θ 1 sin θ 1 ) ] − 1 4 ( b 1 r + c 1 r ∣ v ⃗ 1 r ∣ ) [ r ˙ 1 ( cos 2 θ 1 + sin 2 θ 1 ) + r 1 θ ˙ 1 ( − sin θ 1 cos θ 1 + cos θ 1 sin θ 1 ) ] − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r ˙ 1 ( cos 2 θ 1 + sin 2 θ 1 ) + r 1 θ ˙ 1 ( − sin θ 1 cos θ 1 + cos θ 1 sin θ 1 ) + r ˙ 2 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 ) + r 2 θ ˙ 2 ( − cos θ 1 sin θ 2 + sin θ 1 cos θ 2 ) ] − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r ˙ 1 ( cos 2 θ 1 + sin 2 θ 1 ) + r 1 θ ˙ 1 ( − sin θ 1 cos θ 1 + cos θ 1 sin θ 1 ) + 1 2 [ r ˙ 2 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 ) + r 2 θ ˙ 2 ( − cos θ 1 sin θ 2 + sin θ 1 cos θ 2 ) ] ] = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) r ˙ 1 − r ˙ 1 4 ( b 1 r + c 1 r ∣ v ⃗ 1 r ∣ ) − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r ˙ 1 + r ˙ 2 cos Δ − r 2 θ ˙ 2 sin Δ ] − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r ˙ 1 + r ˙ 2 cos Δ − r 2 θ ˙ 2 sin Δ 2 ] . \begin{aligned} Q_{r_1} &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\vec{v}_{1b}\cdot \dfrac{\partial \vec{r}_{1b}}{\partial r_{1}} -(b_{1r}+c_{1r}|\vec{v}_{1r}|)\vec{v}_{1r}\cdot \dfrac{\partial \vec{r}_{1r}}{\partial r_{1}} - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\vec{v}_{2b}\cdot \dfrac{\partial \vec{r}_{2b}}{\partial r_1} - (b_{2r}+c_{2r}|\vec{v}_{2r}|)\vec{v}_{2r}\cdot \dfrac{\partial \vec{r}_{2r}}{\partial r_1} \\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\begin{bmatrix} \dot{r}_1\cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1} \end{bmatrix} \cdot \begin{bmatrix} \cos{\theta_1} \\ \sin{\theta_1} \end{bmatrix} -(b_{1r}+c_{1r}|\vec{v}_{1r}|)\dfrac{1}{2}\begin{bmatrix} \dot{r}_1\cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1} \end{bmatrix} \cdot \dfrac{1}{2} \begin{bmatrix} \cos{\theta_1} \\ \sin{\theta_1} \end{bmatrix} - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2} \end{bmatrix} \cdot \begin{bmatrix} \cos{\theta_1} \\ \sin{\theta_1} \end{bmatrix}- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dfrac{\dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2}}{2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dfrac{\dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}}{2} \end{bmatrix} \cdot \begin{bmatrix} \cos{\theta_1} \\ \sin{\theta_1} \end{bmatrix} \\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\left[\dot{r}_1\cos^2{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_1} + \dot{r}_1\sin^2{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1}\sin{\theta_1}\right] \\ &- \dfrac{1}{4}(b_{1r}+c_{1r}|\vec{v}_{1r}|)\left[\dot{r}_1\cos^2{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_1} + \dot{r}_1\sin^2{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1}\sin{\theta_1}\right] \\ &- (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1\cos^2{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_1} + \dot{r}_2\cos{\theta_1}\cos{\theta_2}-r_2\dot{\theta}_2\cos{\theta_1}\sin{\theta_2} \right.\\ &\left.+ \dot{r}_1\sin^2{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1}\sin{\theta_1} + \dot{r}_2\sin{\theta_1}\sin{\theta_2} + r_2\dot{\theta}_2\sin{\theta_1}\cos{\theta_2} \right] \\ &- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1\cos^2{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_1} + \dfrac{1}{2}\left[\dot{r}_2\cos{\theta_1}\cos{\theta_2}-r_2\dot{\theta}_2\cos{\theta_1}\sin{\theta_2}\right]\right.\\ &\left.+ \dot{r}_1\sin^2{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1}\sin{\theta_1} + \dfrac{\dot{r}_2\sin{\theta_1}\sin{\theta_2} + r_2\dot{\theta}_2\sin{\theta_1}\cos{\theta_2}}{2} \right] \\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\left[\dot{r}_1(\cos^2{\theta_1}+\sin^2{\theta_1}) + r_1\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_1} + \cos{\theta_1}\sin{\theta_1})\right] \\ &- \dfrac{1}{4}(b_{1r}+c_{1r}|\vec{v}_{1r}|)\left[\dot{r}_1(\cos^2{\theta_1}+\sin^2{\theta_1}) + r_1\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_1} + \cos{\theta_1}\sin{\theta_1})\right] \\ &- (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1(\cos^2{\theta_1}+\sin^2{\theta_1}) + r_1\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_1} + \cos{\theta_1}\sin{\theta_1}) \right.\\ &\left.+ \dot{r}_2(\cos{\theta_1}\cos{\theta_2}+\sin{\theta_1}\sin{\theta_2})+r_2\dot{\theta}_2(-\cos{\theta_1}\sin{\theta_2} + \sin{\theta_1}\cos{\theta_2}) \right] \\ &- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1(\cos^2{\theta_1}+\sin^2{\theta_1}) + r_1\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_1} + \cos{\theta_1}\sin{\theta_1})\right.\\ &\left.+ \dfrac{1}{2}\left[\dot{r}_2(\cos{\theta_1}\cos{\theta_2}+\sin{\theta_1}\sin{\theta_2})+r_2\dot{\theta}_2(-\cos{\theta_1}\sin{\theta_2}+\sin{\theta_1}\cos{\theta_2})\right]\right]\\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\dot{r}_1 - \dfrac{\dot{r}_1}{4}(b_{1r}+c_{1r}|\vec{v}_{1r}|) - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1 + \dot{r}_2\cos{\Delta}-r_2\dot{\theta}_2\sin{\Delta} \right] \\ &- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1+ \dfrac{\dot{r}_2\cos{\Delta}-r_2\dot{\theta}_2\sin{\Delta}}{2}\right]. \end{aligned} Q r 1 = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) v 1 b ⋅ ∂ r 1 ∂ r 1 b − ( b 1 r + c 1 r ∣ v 1 r ∣ ) v 1 r ⋅ ∂ r 1 ∂ r 1 r − ( b 2 b + c 2 b ∣ v 2 b ∣ ) v 2 b ⋅ ∂ r 1 ∂ r 2 b − ( b 2 r + c 2 r ∣ v 2 r ∣ ) v 2 r ⋅ ∂ r 1 ∂ r 2 r = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ⋅ [ cos θ 1 sin θ 1 ] − ( b 1 r + c 1 r ∣ v 1 r ∣ ) 2 1 [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ⋅ 2 1 [ cos θ 1 sin θ 1 ] − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ] ⋅ [ cos θ 1 sin θ 1 ] − ( b 2 r + c 2 r ∣ v 2 r ∣ ) ⎣ ⎢ ⎢ ⎡ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + 2 r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + 2 r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ⎦ ⎥ ⎥ ⎤ ⋅ [ cos θ 1 sin θ 1 ] = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) [ r ˙ 1 cos 2 θ 1 − r 1 θ ˙ 1 sin θ 1 cos θ 1 + r ˙ 1 sin 2 θ 1 + r 1 θ ˙ 1 cos θ 1 sin θ 1 ] − 4 1 ( b 1 r + c 1 r ∣ v 1 r ∣ ) [ r ˙ 1 cos 2 θ 1 − r 1 θ ˙ 1 sin θ 1 cos θ 1 + r ˙ 1 sin 2 θ 1 + r 1 θ ˙ 1 cos θ 1 sin θ 1 ] − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r ˙ 1 cos 2 θ 1 − r 1 θ ˙ 1 sin θ 1 cos θ 1 + r ˙ 2 cos θ 1 cos θ 2 − r 2 θ ˙ 2 cos θ 1 sin θ 2 + r ˙ 1 sin 2 θ 1 + r 1 θ ˙ 1 cos θ 1 sin θ 1 + r ˙ 2 sin θ 1 sin θ 2 + r 2 θ ˙ 2 sin θ 1 cos θ 2 ] − ( b 2 r + c 2 r ∣ v 2 r ∣ ) [ r ˙ 1 cos 2 θ 1 − r 1 θ ˙ 1 sin θ 1 cos θ 1 + 2 1 [ r ˙ 2 cos θ 1 cos θ 2 − r 2 θ ˙ 2 cos θ 1 sin θ 2 ] + r ˙ 1 sin 2 θ 1 + r 1 θ ˙ 1 cos θ 1 sin θ 1 + 2 r ˙ 2 sin θ 1 sin θ 2 + r 2 θ ˙ 2 sin θ 1 cos θ 2 ] = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) [ r ˙ 1 ( cos 2 θ 1 + sin 2 θ 1 ) + r 1 θ ˙ 1 ( − sin θ 1 cos θ 1 + cos θ 1 sin θ 1 ) ] − 4 1 ( b 1 r + c 1 r ∣ v 1 r ∣ ) [ r ˙ 1 ( cos 2 θ 1 + sin 2 θ 1 ) + r 1 θ ˙ 1 ( − sin θ 1 cos θ 1 + cos θ 1 sin θ 1 ) ] − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r ˙ 1 ( cos 2 θ 1 + sin 2 θ 1 ) + r 1 θ ˙ 1 ( − sin θ 1 cos θ 1 + cos θ 1 sin θ 1 ) + r ˙ 2 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 ) + r 2 θ ˙ 2 ( − cos θ 1 sin θ 2 + sin θ 1 cos θ 2 ) ] − ( b 2 r + c 2 r ∣ v 2 r ∣ ) [ r ˙ 1 ( cos 2 θ 1 + sin 2 θ 1 ) + r 1 θ ˙ 1 ( − sin θ 1 cos θ 1 + cos θ 1 sin θ 1 ) + 2 1 [ r ˙ 2 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 ) + r 2 θ ˙ 2 ( − cos θ 1 sin θ 2 + sin θ 1 cos θ 2 ) ] ] = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) r ˙ 1 − 4 r ˙ 1 ( b 1 r + c 1 r ∣ v 1 r ∣ ) − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r ˙ 1 + r ˙ 2 cos Δ − r 2 θ ˙ 2 sin Δ ] − ( b 2 r + c 2 r ∣ v 2 r ∣ ) [ r ˙ 1 + 2 r ˙ 2 cos Δ − r 2 θ ˙ 2 sin Δ ] . Hence the Euler-Lagrange equation for r 1 r_1 r 1 with dissipative forces is
M 1 ( r ¨ 1 − r 1 θ ˙ 1 2 ) + μ 2 ( cos Δ ( r ¨ 2 − r 2 θ ˙ 2 2 ) − sin Δ ( 2 r ˙ 2 θ ˙ 2 + r 2 θ ¨ 2 ) ) + μ 1 g sin θ 1 + k 1 ( r 1 − l 1 ) = Q r 1 . \begin{aligned} M_1(\ddot{r}_1-r_1\dot{\theta}_1^2) + \mu_2 \left(\cos{\Delta}(\ddot{r}_2-r_2\dot{\theta}_2^2) - \sin{\Delta} (2\dot{r}_2\dot{\theta}_2+r_2\ddot{\theta}_2)\right) + \mu_1g\sin{\theta_1} + k_1(r_1-l_1) &= Q_{r_1}. \end{aligned} M 1 ( r ¨ 1 − r 1 θ ˙ 1 2 ) + μ 2 ( cos Δ ( r ¨ 2 − r 2 θ ˙ 2 2 ) − sin Δ ( 2 r ˙ 2 θ ˙ 2 + r 2 θ ¨ 2 ) ) + μ 1 g sin θ 1 + k 1 ( r 1 − l 1 ) = Q r 1 . So, this line of our matrix equation for q ¨ \mathbf{\ddot{q}} q ¨ will be
[ M 1 μ 2 cos Δ 0 − μ 2 r 2 sin Δ ] [ r ¨ 1 r ¨ 2 θ ¨ 1 θ ¨ 2 ] = [ M 1 r 1 2 θ ˙ 1 2 + μ 2 r 2 θ ˙ 2 2 cos Δ + 2 μ 2 r ˙ 2 θ ˙ 2 sin Δ − μ 1 g sin θ 1 − k 1 ( r 1 − l 1 ) + Q r 1 ] . \begin{aligned} \begin{bmatrix} M_1 & \mu_2 \cos{\Delta} & 0 & -\mu_2r_2 \sin{\Delta} \end{bmatrix} \begin{bmatrix} \ddot{r}_1 \\ \ddot{r}_2 \\ \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} &= \begin{bmatrix} M_1r_1^2 \dot{\theta}_1^2 + \mu_2 r_2 \dot{\theta}_2^2\cos{\Delta} + 2\mu_2 \dot{r}_2 \dot{\theta}_2\sin{\Delta} - \mu_1g\sin{\theta_1} - k_1(r_1-l_1) + Q_{r_1} \end{bmatrix}. \end{aligned} [ M 1 μ 2 cos Δ 0 − μ 2 r 2 sin Δ ] ⎣ ⎢ ⎢ ⎢ ⎡ r ¨ 1 r ¨ 2 θ ¨ 1 θ ¨ 2 ⎦ ⎥ ⎥ ⎥ ⎤ = [ M 1 r 1 2 θ ˙ 1 2 + μ 2 r 2 θ ˙ 2 2 cos Δ + 2 μ 2 r ˙ 2 θ ˙ 2 sin Δ − μ 1 g sin θ 1 − k 1 ( r 1 − l 1 ) + Q r 1 ] . As for r 2 r_2 r 2
δ r 2 ′ L = M 1 2 δ r 2 ′ ∣ v ⃗ 1 b ∣ 2 + M 2 2 δ r 2 ′ ∣ v ⃗ 2 b I ∣ 2 + μ 2 2 ( δ r 2 ′ ∣ Δ v ⃗ 2 , 1 I ∣ 2 + 2 g sin θ 2 ) + k 2 ( r 2 − l 2 ) = M 2 2 ( 2 ( r ¨ 2 − r 2 θ ˙ 2 2 ) ) + μ 2 2 ( 2 cos Δ ( r ¨ 1 − r 1 θ ˙ 1 2 ) + 2 sin Δ ( r 1 θ ¨ 1 + 2 r ˙ 1 θ ˙ 1 ) + 2 g sin θ 2 ) + k 2 ( r 2 − l 2 ) = M 2 ( r ¨ 2 − r 2 θ ˙ 2 2 ) + μ 2 ( cos Δ ( r ¨ 1 − r 1 θ ˙ 1 2 ) + sin Δ ( r 1 θ ¨ 1 + 2 r ˙ 1 θ ˙ 1 ) + g sin θ 2 ) + k 2 ( r 2 − l 2 ) = M 2 ( r ¨ 2 − r 2 θ ˙ 2 2 ) + μ 2 ( cos Δ ( r ¨ 1 − r 1 θ ˙ 1 2 ) + sin Δ ( r 1 θ ¨ 1 + 2 r ˙ 1 θ ˙ 1 ) + g sin θ 2 ) + k 2 ( r 2 − l 2 ) . \begin{aligned} \delta'_{r_2} \mathcal{L} &= \dfrac{M_1}{2} \delta'_{r_2} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2} \delta'_{r_2} |\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}(\delta'_{r_2} |\Delta \vec{v}_{2,1}^I|^2+2g\sin{\theta_2}) + k_2(r_2-l_2) \\ &= \dfrac{M_2}{2} (2(\ddot{r}_2 - r_2\dot{\theta}_2^2)) + \dfrac{\mu_2}{2}(2\cos{\Delta}(\ddot{r}_1 - r_1\dot{\theta}_1^2)+2\sin{\Delta}(r_1\ddot{\theta}_1 + 2\dot{r}_1\dot{\theta}_1)+2g\sin{\theta_2}) + k_2(r_2-l_2) \\ &= M_2 (\ddot{r}_2 - r_2\dot{\theta}_2^2) + \mu_2 (\cos{\Delta}(\ddot{r}_1 - r_1\dot{\theta}_1^2)+\sin{\Delta}(r_1\ddot{\theta}_1 + 2\dot{r}_1\dot{\theta}_1)+g\sin{\theta_2}) + k_2(r_2-l_2) \\ &= M_2 (\ddot{r}_2 - r_2\dot{\theta}_2^2) + \mu_2 (\cos{\Delta}(\ddot{r}_1 - r_1\dot{\theta}_1^2)+\sin{\Delta}(r_1\ddot{\theta}_1 + 2\dot{r}_1\dot{\theta}_1)+g\sin{\theta_2}) + k_2(r_2-l_2). \end{aligned} δ r 2 ′ L = 2 M 1 δ r 2 ′ ∣ v 1 b ∣ 2 + 2 M 2 δ r 2 ′ ∣ v 2 b I ∣ 2 + 2 μ 2 ( δ r 2 ′ ∣ Δ v 2 , 1 I ∣ 2 + 2 g sin θ 2 ) + k 2 ( r 2 − l 2 ) = 2 M 2 ( 2 ( r ¨ 2 − r 2 θ ˙ 2 2 ) ) + 2 μ 2 ( 2 cos Δ ( r ¨ 1 − r 1 θ ˙ 1 2 ) + 2 sin Δ ( r 1 θ ¨ 1 + 2 r ˙ 1 θ ˙ 1 ) + 2 g sin θ 2 ) + k 2 ( r 2 − l 2 ) = M 2 ( r ¨ 2 − r 2 θ ˙ 2 2 ) + μ 2 ( cos Δ ( r ¨ 1 − r 1 θ ˙ 1 2 ) + sin Δ ( r 1 θ ¨ 1 + 2 r ˙ 1 θ ˙ 1 ) + g sin θ 2 ) + k 2 ( r 2 − l 2 ) = M 2 ( r ¨ 2 − r 2 θ ˙ 2 2 ) + μ 2 ( cos Δ ( r ¨ 1 − r 1 θ ˙ 1 2 ) + sin Δ ( r 1 θ ¨ 1 + 2 r ˙ 1 θ ˙ 1 ) + g sin θ 2 ) + k 2 ( r 2 − l 2 ) . Generalized dissipative forces
Q r 2 = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) v ⃗ 1 b ⋅ ∂ r ⃗ 1 b ∂ r 2 − ( b 1 r + c 1 r ∣ v ⃗ 1 r ∣ ) v ⃗ 1 r ⋅ ∂ r ⃗ 1 r ∂ r 2 − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) v ⃗ 2 b ⋅ ∂ r ⃗ 2 b ∂ r 2 − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) v ⃗ 2 r ⋅ ∂ r ⃗ 2 r ∂ r 2 = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ⋅ 0 ⃗ − ( b 1 r + c 1 r ∣ v ⃗ 1 r ∣ ) 1 2 [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ⋅ 0 ⃗ − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ] ⋅ [ cos θ 2 sin θ 2 ] − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 2 ] ⋅ 1 2 [ cos θ 2 sin θ 2 ] = − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r ˙ 1 cos θ 1 cos θ 2 − r 1 θ ˙ 1 sin θ 1 cos θ 2 + r ˙ 2 cos 2 θ 2 − r 2 θ ˙ 2 sin θ 2 cos θ 2 + r ˙ 1 sin θ 1 sin θ 2 + r 1 θ ˙ 1 cos θ 1 sin θ 2 + r ˙ 2 sin 2 θ 2 + r 2 θ ˙ 2 cos θ 2 sin θ 2 ] − 1 2 ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r ˙ 1 cos θ 1 cos θ 2 − r 1 θ ˙ 1 sin θ 1 cos θ 2 + r ˙ 2 cos 2 θ 2 − r 2 θ ˙ 2 sin θ 2 cos θ 2 2 + r ˙ 1 sin θ 1 sin θ 2 + r 1 θ ˙ 1 cos θ 1 sin θ 2 + r ˙ 2 sin 2 θ 2 + r 2 θ ˙ 2 cos θ 2 sin θ 2 2 ] = − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r ˙ 1 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 ) + r 1 θ ˙ 1 ( − sin θ 1 cos θ 2 + cos θ 1 sin θ 2 ) + r ˙ 2 ( cos 2 θ 2 + sin 2 θ 2 ) + r 2 θ ˙ 2 ( − sin θ 2 cos θ 2 + cos θ 2 sin θ 2 ) ] − 1 2 ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r ˙ 1 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 ) + r 1 θ ˙ 1 ( − sin θ 1 cos θ 2 + cos θ 1 sin θ 2 ) + r ˙ 2 ( cos 2 θ 2 + sin 2 θ 2 ) + r 2 θ ˙ 2 ( − sin θ 2 cos θ 2 + cos θ 2 sin θ 2 ) 2 ] = − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r ˙ 1 cos ( θ 2 − θ 1 ) + r 1 θ ˙ 1 sin ( θ 2 − θ 1 ) + r ˙ 2 ] − 1 2 ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r ˙ 1 cos Δ + r 1 θ ˙ 1 sin Δ + r ˙ 2 2 ] = − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r ˙ 1 cos Δ + r 1 θ ˙ 1 sin Δ + r ˙ 2 ] − 1 2 ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r ˙ 1 cos Δ + r 1 θ ˙ 1 sin Δ + r ˙ 2 2 ] . \begin{aligned} Q_{r_2} &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\vec{v}_{1b} \cdot \dfrac{\partial \vec{r}_{1b}}{\partial r_2}-(b_{1r}+c_{1r}|\vec{v}_{1r}|)\vec{v}_{1r} \cdot \dfrac{\partial \vec{r}_{1r}}{\partial r_2} - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\vec{v}_{2b} \cdot \dfrac{\partial \vec{r}_{2b}}{\partial r_{2}} - (b_{2r}+c_{2r}|\vec{v}_{2r}|)\vec{v}_{2r} \cdot \dfrac{\partial \vec{r}_{2r}}{\partial r_{2}} \\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\begin{bmatrix} \dot{r}_1\cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1} \end{bmatrix} \cdot \vec{0} -(b_{1r}+c_{1r}|\vec{v}_{1r}|)\dfrac{1}{2}\begin{bmatrix} \dot{r}_1\cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta_1} \end{bmatrix} \cdot \vec{0} - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2} \end{bmatrix} \cdot \begin{bmatrix} \cos{\theta_2} \\ \sin{\theta_2} \end{bmatrix} - (b_{2r}+c_{2r}|\vec{v}_{2r}|)\begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dfrac{\dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2}}{2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dfrac{\dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}}{2} \end{bmatrix} \cdot \dfrac{1}{2}\begin{bmatrix} \cos{\theta_2} \\ \sin{\theta_2} \end{bmatrix} \\ &= - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1\cos{\theta_1}\cos{\theta_2} - r_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_2} + \dot{r}_2\cos^2{\theta_2}-r_2\dot{\theta}_2\sin{\theta_2}\cos{\theta_2} + \dot{r}_1\sin{\theta_1}\sin{\theta_2} + r_1\dot{\theta}_1\cos{\theta_1}\sin{\theta_2} + \dot{r}_2\sin^2{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}\sin{\theta_2}\right] - \dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1\cos{\theta_1}\cos{\theta_2} - r_1\dot{\theta}_1\sin{\theta_1}\cos{\theta_2} + \dfrac{\dot{r}_2\cos^2{\theta_2}-r_2\dot{\theta}_2\sin{\theta_2}\cos{\theta_2}}{2} + \dot{r}_1\sin{\theta_1}\sin{\theta_2} + r_1\dot{\theta}_1\cos{\theta_1}\sin{\theta_2} + \dfrac{\dot{r}_2\sin^2{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}\sin{\theta_2}}{2}\right] \\ &= - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1(\cos{\theta_1}\cos{\theta_2}+\sin{\theta_1}\sin{\theta_2}) + r_1\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_2} + \cos{\theta_1}\sin{\theta_2}) + \dot{r}_2(\cos^2{\theta_2} + \sin^2{\theta_2})+r_2\dot{\theta}_2(-\sin{\theta_2}\cos{\theta_2} + \cos{\theta_2}\sin{\theta_2})\right] - \dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1(\cos{\theta_1}\cos{\theta_2}+\sin{\theta_1}\sin{\theta_2}) + r_1\dot{\theta}_1(-\sin{\theta_1}\cos{\theta_2} + \cos{\theta_1}\sin{\theta_2}) + \dfrac{\dot{r}_2(\cos^2{\theta_2} + \sin^2{\theta_2})+r_2\dot{\theta}_2(-\sin{\theta_2}\cos{\theta_2} + \cos{\theta_2}\sin{\theta_2})}{2}\right] \\ &= - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1\cos{(\theta_2-\theta_1)} + r_1\dot{\theta}_1\sin{(\theta_2-\theta_1)} + \dot{r}_2\right] - \dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1\cos{\Delta} + r_1\dot{\theta}_1\sin{\Delta} + \dfrac{\dot{r}_2}{2}\right]\\ &= - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1\cos{\Delta} + r_1\dot{\theta}_1\sin{\Delta} + \dot{r}_2\right]- \dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1\cos{\Delta} + r_1\dot{\theta}_1\sin{\Delta} + \dfrac{\dot{r}_2}{2}\right]. \end{aligned} Q r 2 = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) v 1 b ⋅ ∂ r 2 ∂ r 1 b − ( b 1 r + c 1 r ∣ v 1 r ∣ ) v 1 r ⋅ ∂ r 2 ∂ r 1 r − ( b 2 b + c 2 b ∣ v 2 b ∣ ) v 2 b ⋅ ∂ r 2 ∂ r 2 b − ( b 2 r + c 2 r ∣ v 2 r ∣ ) v 2 r ⋅ ∂ r 2 ∂ r 2 r = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ⋅ 0 − ( b 1 r + c 1 r ∣ v 1 r ∣ ) 2 1 [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ⋅ 0 − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ] ⋅ [ cos θ 2 sin θ 2 ] − ( b 2 r + c 2 r ∣ v 2 r ∣ ) ⎣ ⎢ ⎢ ⎡ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + 2 r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + 2 r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ⎦ ⎥ ⎥ ⎤ ⋅ 2 1 [ cos θ 2 sin θ 2 ] = − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r ˙ 1 cos θ 1 cos θ 2 − r 1 θ ˙ 1 sin θ 1 cos θ 2 + r ˙ 2 cos 2 θ 2 − r 2 θ ˙ 2 sin θ 2 cos θ 2 + r ˙ 1 sin θ 1 sin θ 2 + r 1 θ ˙ 1 cos θ 1 sin θ 2 + r ˙ 2 sin 2 θ 2 + r 2 θ ˙ 2 cos θ 2 sin θ 2 ] − 2 1 ( b 2 r + c 2 r ∣ v 2 r ∣ ) [ r ˙ 1 cos θ 1 cos θ 2 − r 1 θ ˙ 1 sin θ 1 cos θ 2 + 2 r ˙ 2 cos 2 θ 2 − r 2 θ ˙ 2 sin θ 2 cos θ 2 + r ˙ 1 sin θ 1 sin θ 2 + r 1 θ ˙ 1 cos θ 1 sin θ 2 + 2 r ˙ 2 sin 2 θ 2 + r 2 θ ˙ 2 cos θ 2 sin θ 2 ] = − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r ˙ 1 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 ) + r 1 θ ˙ 1 ( − sin θ 1 cos θ 2 + cos θ 1 sin θ 2 ) + r ˙ 2 ( cos 2 θ 2 + sin 2 θ 2 ) + r 2 θ ˙ 2 ( − sin θ 2 cos θ 2 + cos θ 2 sin θ 2 ) ] − 2 1 ( b 2 r + c 2 r ∣ v 2 r ∣ ) [ r ˙ 1 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 ) + r 1 θ ˙ 1 ( − sin θ 1 cos θ 2 + cos θ 1 sin θ 2 ) + 2 r ˙ 2 ( cos 2 θ 2 + sin 2 θ 2 ) + r 2 θ ˙ 2 ( − sin θ 2 cos θ 2 + cos θ 2 sin θ 2 ) ] = − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r ˙ 1 cos ( θ 2 − θ 1 ) + r 1 θ ˙ 1 sin ( θ 2 − θ 1 ) + r ˙ 2 ] − 2 1 ( b 2 r + c 2 r ∣ v 2 r ∣ ) [ r ˙ 1 cos Δ + r 1 θ ˙ 1 sin Δ + 2 r ˙ 2 ] = − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r ˙ 1 cos Δ + r 1 θ ˙ 1 sin Δ + r ˙ 2 ] − 2 1 ( b 2 r + c 2 r ∣ v 2 r ∣ ) [ r ˙ 1 cos Δ + r 1 θ ˙ 1 sin Δ + 2 r ˙ 2 ] . Hence the Euler-Lagrange equation for r 2 r_2 r 2 with dissipative forces is
M 2 ( r ¨ 2 − r 2 θ ˙ 2 2 ) + μ 2 ( cos Δ ( r ¨ 1 − r 1 θ ˙ 1 2 ) + sin Δ ( r 1 θ ¨ 1 + 2 r ˙ 1 θ ˙ 1 ) + g sin θ 2 ) + k 2 ( r 2 − l 2 ) = Q r 2 . \begin{aligned} M_2 (\ddot{r}_2 - r_2\dot{\theta}_2^2) + \mu_2 (\cos{\Delta}(\ddot{r}_1 - r_1\dot{\theta}_1^2)+\sin{\Delta}(r_1\ddot{\theta}_1 + 2\dot{r}_1\dot{\theta}_1)+g\sin{\theta_2}) + k_2(r_2-l_2) &= Q_{r_2}. \end{aligned} M 2 ( r ¨ 2 − r 2 θ ˙ 2 2 ) + μ 2 ( cos Δ ( r ¨ 1 − r 1 θ ˙ 1 2 ) + sin Δ ( r 1 θ ¨ 1 + 2 r ˙ 1 θ ˙ 1 ) + g sin θ 2 ) + k 2 ( r 2 − l 2 ) = Q r 2 . Or, in matrix form
[ μ 2 cos Δ M 2 μ 2 r 1 sin Δ 0 ] [ r ¨ 1 r ¨ 2 θ ¨ 1 θ ¨ 2 ] = [ M 2 r 2 θ ˙ 2 2 + μ 2 ( r 1 θ ˙ 1 2 cos Δ − 2 r ˙ 1 θ ˙ 1 sin Δ − g sin θ 2 ) − k 2 ( r 2 − l 2 ) + Q r 2 ] . \begin{aligned} \begin{bmatrix} \mu_2 \cos{\Delta} & M_2 & \mu_2 r_1\sin{\Delta} & 0 \end{bmatrix} \begin{bmatrix} \ddot{r}_1 \\ \ddot{r}_2 \\ \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} &= \begin{bmatrix} M_2r_2\dot{\theta}_2^2 + \mu_2 (r_1\dot{\theta}_1^2\cos{\Delta}-2\dot{r}_1\dot{\theta}_1\sin{\Delta} - g\sin{\theta_2}) - k_2(r_2-l_2) + Q_{r_2} \end{bmatrix}. \end{aligned} [ μ 2 cos Δ M 2 μ 2 r 1 sin Δ 0 ] ⎣ ⎢ ⎢ ⎢ ⎡ r ¨ 1 r ¨ 2 θ ¨ 1 θ ¨ 2 ⎦ ⎥ ⎥ ⎥ ⎤ = [ M 2 r 2 θ ˙ 2 2 + μ 2 ( r 1 θ ˙ 1 2 cos Δ − 2 r ˙ 1 θ ˙ 1 sin Δ − g sin θ 2 ) − k 2 ( r 2 − l 2 ) + Q r 2 ] . As for θ 1 \theta_1 θ 1
δ θ 1 ′ L = M 1 2 δ θ 1 ′ ∣ v ⃗ 1 b ∣ 2 + M 2 2 δ θ 1 ′ ∣ v ⃗ 2 b I ∣ 2 + μ 2 2 ( δ θ 1 ′ ∣ Δ v ⃗ 2 , 1 I ∣ 2 ) + μ 1 g r 1 cos θ 1 = M 1 2 ( 2 r 1 2 θ ¨ 1 + 4 r 1 r ˙ 1 θ ˙ 1 ) + μ 2 2 ( 2 cos Δ ( 2 r 1 r ˙ 2 θ ˙ 2 + r 1 r 2 θ ¨ 2 ) + 2 sin Δ ( r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 2 ) ) + μ 1 g r 1 cos θ 1 = M 1 ( r 1 2 θ ¨ 1 + 2 r 1 r ˙ 1 θ ˙ 1 ) + μ 2 ( cos Δ ( 2 r 1 r ˙ 2 θ ˙ 2 + r 1 r 2 θ ¨ 2 ) + sin Δ ( r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 2 ) ) + μ 1 g r 1 cos θ 1 . \begin{aligned} \delta'_{\theta_1} \mathcal{L} &= \dfrac{M_1}{2} \delta'_{\theta_1} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2} \delta'_{\theta_1} |\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}(\delta'_{\theta_1}|\Delta \vec{v}_{2,1}^I|^2) + \mu_1 gr_1 \cos{\theta_1} \\ &= \dfrac{M_1}{2} (2r_1^2 \ddot{\theta}_1 + 4r_1\dot{r}_1\dot{\theta}_1) + \dfrac{\mu_2}{2}(2\cos{\Delta}(2r_1\dot{r}_2\dot{\theta}_2+r_1r_2\ddot{\theta}_2) +2\sin{\Delta}(r_1\ddot{r}_2-r_1r_2\dot{\theta}_2^2)) + \mu_1 gr_1 \cos{\theta_1} \\ &= M_1 (r_1^2 \ddot{\theta}_1 + 2r_1\dot{r}_1\dot{\theta}_1) + \mu_2(\cos{\Delta}(2r_1\dot{r}_2\dot{\theta}_2+r_1r_2\ddot{\theta}_2) +\sin{\Delta}(r_1\ddot{r}_2-r_1r_2\dot{\theta}_2^2)) + \mu_1 gr_1 \cos{\theta_1}. \end{aligned} δ θ 1 ′ L = 2 M 1 δ θ 1 ′ ∣ v 1 b ∣ 2 + 2 M 2 δ θ 1 ′ ∣ v 2 b I ∣ 2 + 2 μ 2 ( δ θ 1 ′ ∣ Δ v 2 , 1 I ∣ 2 ) + μ 1 g r 1 cos θ 1 = 2 M 1 ( 2 r 1 2 θ ¨ 1 + 4 r 1 r ˙ 1 θ ˙ 1 ) + 2 μ 2 ( 2 cos Δ ( 2 r 1 r ˙ 2 θ ˙ 2 + r 1 r 2 θ ¨ 2 ) + 2 sin Δ ( r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 2 ) ) + μ 1 g r 1 cos θ 1 = M 1 ( r 1 2 θ ¨ 1 + 2 r 1 r ˙ 1 θ ˙ 1 ) + μ 2 ( cos Δ ( 2 r 1 r ˙ 2 θ ˙ 2 + r 1 r 2 θ ¨ 2 ) + sin Δ ( r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 2 ) ) + μ 1 g r 1 cos θ 1 . Generalized dissipative force
Q θ 1 = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) v ⃗ 1 b ⋅ ∂ r ⃗ 1 b ∂ θ 1 − ( b 1 r + c 1 r ∣ v ⃗ 1 r ∣ ) v ⃗ 1 r ⋅ ∂ r ⃗ 1 r ∂ θ 1 − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) v ⃗ 2 b ⋅ ∂ r ⃗ 2 b ∂ θ 1 − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) v ⃗ 2 r ⋅ ∂ r ⃗ 2 r ∂ θ 1 = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ⋅ r 1 [ − sin θ 1 cos θ 1 ] − 1 4 ( b 1 r + c 1 r ∣ v ⃗ 1 r ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ⋅ r 1 [ − sin θ 1 cos θ 1 ] − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ] ⋅ r 1 [ − sin θ 1 cos θ 1 ] − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 2 ] ⋅ r 1 [ − sin θ 1 cos θ 1 ] = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) [ − r 1 r ˙ 1 cos θ 1 sin θ 1 + r 1 2 θ ˙ 1 sin 2 θ 1 + r 1 r ˙ 1 sin θ 1 cos θ 1 + r 1 2 θ ˙ 1 cos 2 θ 1 ] − 1 4 ( b 1 r + c 1 r ∣ v ⃗ 1 r ∣ ) [ − r 1 r ˙ 1 cos θ 1 sin θ 1 + r 1 2 θ ˙ 1 sin 2 θ 1 + r 1 r ˙ 1 sin θ 1 cos θ 1 + r 1 2 θ ˙ 1 cos 2 θ 1 ] − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ − r 1 r ˙ 1 cos θ 1 sin θ 1 + r 1 2 θ 1 ˙ sin 2 θ 1 − r 1 r ˙ 2 sin θ 1 cos θ 2 + r 1 r 2 θ ˙ 2 sin θ 1 sin θ 2 + r 1 r ˙ 1 cos θ 1 sin θ 1 + r 1 2 θ ˙ 1 cos 2 θ 1 + r 1 r ˙ 2 cos θ 1 sin θ 2 + r 1 r 2 θ ˙ 2 cos θ 1 cos θ 2 ] − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ − r 1 r ˙ 1 cos θ 1 sin θ 1 + r 1 2 θ 1 ˙ sin 2 θ 1 − r 1 r ˙ 2 sin θ 1 cos θ 2 + r 1 r 2 θ ˙ 2 sin θ 1 sin θ 2 2 + r 1 r ˙ 1 cos θ 1 sin θ 1 + r 1 2 θ ˙ 1 cos 2 θ 1 + r 1 r ˙ 2 cos θ 1 sin θ 2 + r 1 r 2 θ ˙ 2 cos θ 1 cos θ 2 2 ] = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) [ r 1 r ˙ 1 ( − cos θ 1 sin θ 1 + sin θ 1 cos θ 1 ) + r 1 2 θ ˙ 1 ( sin 2 θ 1 + cos 2 θ 1 ) ] − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r 1 r ˙ 1 ( − cos θ 1 sin θ 1 + cos θ 1 sin θ 1 ) + r 1 2 θ 1 ˙ ( sin 2 θ 1 + cos 2 θ 1 ) + r 1 r ˙ 2 ( − sin θ 1 cos θ 2 + cos θ 1 sin θ 2 ) + r 1 r 2 θ ˙ 2 ( sin θ 1 sin θ 2 + cos θ 1 cos θ 2 ) ] = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) r 1 2 θ ˙ 1 − 1 4 ( b 1 r + c 1 r ∣ v ⃗ 1 r ∣ ) r 1 2 θ ˙ 1 − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r 1 2 θ 1 ˙ + r 1 r ˙ 2 sin Δ + r 1 r 2 θ ˙ 2 cos Δ ] − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r 1 2 θ 1 ˙ + r 1 r ˙ 2 sin Δ + r 1 r 2 θ ˙ 2 cos Δ 2 ] . \begin{aligned} Q_{\theta_1} &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\vec{v}_{1b} \cdot \dfrac{\partial \vec{r}_{1b}}{\partial \theta_1} -(b_{1r}+c_{1r}|\vec{v}_{1r}|)\vec{v}_{1r} \cdot \dfrac{\partial \vec{r}_{1r}}{\partial \theta_1} - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\vec{v}_{2b} \cdot \dfrac{\partial \vec{r}_{2b}}{\partial \theta_1}- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\vec{v}_{2r} \cdot \dfrac{\partial \vec{r}_{2r}}{\partial \theta_1} \\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\begin{bmatrix} \dot{r}_1\cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta}_1 \end{bmatrix} \cdot r_1\begin{bmatrix} -\sin{\theta_1} \\ \cos{\theta_1} \end{bmatrix} -\dfrac{1}{4}(b_{1r}+c_{1r}|\vec{v}_{1r}|)\begin{bmatrix} \dot{r}_1\cos{\theta_1} - r_1\dot{\theta}_1\sin{\theta_1} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1\cos{\theta}_1 \end{bmatrix} \cdot r_1\begin{bmatrix} -\sin{\theta_1} \\ \cos{\theta_1} \end{bmatrix} \\ &- (b_{2b}+c_{2b}|\vec{v}_{2b}|) \begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2} \end{bmatrix} \cdot r_1\begin{bmatrix} -\sin{\theta_1} \\ \cos{\theta_1} \end{bmatrix} \\ &- (b_{2r}+c_{2r}|\vec{v}_{2r}|) \begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dfrac{\dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2}}{2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dfrac{\dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}}{2} \end{bmatrix} \cdot r_1\begin{bmatrix} -\sin{\theta_1} \\ \cos{\theta_1} \end{bmatrix} &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\left[-r_1\dot{r}_1\cos{\theta_1}\sin{\theta_1}+r_1^2\dot{\theta}_1\sin^2{\theta_1} + r_1\dot{r}_1\sin{\theta_1}\cos{\theta_1}+r_1^2\dot{\theta}_1\cos^2{\theta_1}\right] \\ &-\dfrac{1}{4}(b_{1r}+c_{1r}|\vec{v}_{1r}|)\left[-r_1\dot{r}_1\cos{\theta_1}\sin{\theta_1}+r_1^2\dot{\theta}_1\sin^2{\theta_1} + r_1\dot{r}_1\sin{\theta_1}\cos{\theta_1}+r_1^2\dot{\theta}_1\cos^2{\theta_1}\right] \\ &- (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[-r_1\dot{r}_1\cos{\theta_1}\sin{\theta_1} + r_1^2\dot{\theta_1}\sin^2{\theta_1} -r_1\dot{r}_2\sin{\theta_1}\cos{\theta_2}+r_1r_2\dot{\theta}_2\sin{\theta_1}\sin{\theta_2} \right.\\ &\left.+r_1\dot{r}_1\cos{\theta_1}\sin{\theta_1}+r_1^2\dot{\theta}_1\cos^2{\theta_1} + r_1\dot{r}_2\cos{\theta_1}\sin{\theta_2}+r_1r_2\dot{\theta}_2\cos{\theta_1}\cos{\theta_2}\right]\\ &- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[-r_1\dot{r}_1\cos{\theta_1}\sin{\theta_1} + r_1^2\dot{\theta_1}\sin^2{\theta_1} -\dfrac{r_1\dot{r}_2\sin{\theta_1}\cos{\theta_2}+r_1r_2\dot{\theta}_2\sin{\theta_1}\sin{\theta_2}}{2} \right.\\ &\left.+r_1\dot{r}_1\cos{\theta_1}\sin{\theta_1}+r_1^2\dot{\theta}_1\cos^2{\theta_1} + \dfrac{r_1\dot{r}_2\cos{\theta_1}\sin{\theta_2}+r_1r_2\dot{\theta}_2\cos{\theta_1}\cos{\theta_2}}{2}\right] &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\left[r_1\dot{r}_1(-\cos{\theta_1}\sin{\theta_1}+\sin{\theta_1}\cos{\theta_1}) + r_1^2\dot{\theta}_1(\sin^2{\theta_1} +\cos^2{\theta_1})\right] - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[r_1\dot{r}_1(-\cos{\theta_1}\sin{\theta_1} + \cos{\theta_1}\sin{\theta_1}) +r_1^2\dot{\theta_1}(\sin^2{\theta_1}+\cos^2{\theta_1})\right.\\ &\left.+r_1\dot{r}_2(-\sin{\theta_1}\cos{\theta_2}+\cos{\theta_1}\sin{\theta_2})+r_1r_2\dot{\theta}_2(\sin{\theta_1}\sin{\theta_2}+\cos{\theta_1}\cos{\theta_2})\right] \\ &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)r_1^2\dot{\theta}_1 -\dfrac{1}{4}(b_{1r}+c_{1r}|\vec{v}_{1r}|)r_1^2\dot{\theta}_1 - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[ r_1^2\dot{\theta_1}+r_1\dot{r}_2\sin{\Delta}+r_1r_2\dot{\theta}_2\cos{\Delta}\right] \\ &- (b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[ r_1^2\dot{\theta_1}+\dfrac{r_1\dot{r}_2\sin{\Delta}+r_1r_2\dot{\theta}_2\cos{\Delta}}{2}\right]. \end{aligned} Q θ 1 = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) v 1 b ⋅ ∂ θ 1 ∂ r 1 b − ( b 1 r + c 1 r ∣ v 1 r ∣ ) v 1 r ⋅ ∂ θ 1 ∂ r 1 r − ( b 2 b + c 2 b ∣ v 2 b ∣ ) v 2 b ⋅ ∂ θ 1 ∂ r 2 b − ( b 2 r + c 2 r ∣ v 2 r ∣ ) v 2 r ⋅ ∂ θ 1 ∂ r 2 r = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ⋅ r 1 [ − sin θ 1 cos θ 1 ] − 4 1 ( b 1 r + c 1 r ∣ v 1 r ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 ] ⋅ r 1 [ − sin θ 1 cos θ 1 ] − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ] ⋅ r 1 [ − sin θ 1 cos θ 1 ] − ( b 2 r + c 2 r ∣ v 2 r ∣ ) ⎣ ⎢ ⎢ ⎡ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + 2 r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + 2 r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ⎦ ⎥ ⎥ ⎤ ⋅ r 1 [ − sin θ 1 cos θ 1 ] − 4 1 ( b 1 r + c 1 r ∣ v 1 r ∣ ) [ − r 1 r ˙ 1 cos θ 1 sin θ 1 + r 1 2 θ ˙ 1 sin 2 θ 1 + r 1 r ˙ 1 sin θ 1 cos θ 1 + r 1 2 θ ˙ 1 cos 2 θ 1 ] − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ − r 1 r ˙ 1 cos θ 1 sin θ 1 + r 1 2 θ 1 ˙ sin 2 θ 1 − r 1 r ˙ 2 sin θ 1 cos θ 2 + r 1 r 2 θ ˙ 2 sin θ 1 sin θ 2 + r 1 r ˙ 1 cos θ 1 sin θ 1 + r 1 2 θ ˙ 1 cos 2 θ 1 + r 1 r ˙ 2 cos θ 1 sin θ 2 + r 1 r 2 θ ˙ 2 cos θ 1 cos θ 2 ] − ( b 2 r + c 2 r ∣ v 2 r ∣ ) [ − r 1 r ˙ 1 cos θ 1 sin θ 1 + r 1 2 θ 1 ˙ sin 2 θ 1 − 2 r 1 r ˙ 2 sin θ 1 cos θ 2 + r 1 r 2 θ ˙ 2 sin θ 1 sin θ 2 + r 1 r ˙ 1 cos θ 1 sin θ 1 + r 1 2 θ ˙ 1 cos 2 θ 1 + 2 r 1 r ˙ 2 cos θ 1 sin θ 2 + r 1 r 2 θ ˙ 2 cos θ 1 cos θ 2 ] + r 1 r ˙ 2 ( − sin θ 1 cos θ 2 + cos θ 1 sin θ 2 ) + r 1 r 2 θ ˙ 2 ( sin θ 1 sin θ 2 + cos θ 1 cos θ 2 ) ] = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) r 1 2 θ ˙ 1 − 4 1 ( b 1 r + c 1 r ∣ v 1 r ∣ ) r 1 2 θ ˙ 1 − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r 1 2 θ 1 ˙ + r 1 r ˙ 2 sin Δ + r 1 r 2 θ ˙ 2 cos Δ ] − ( b 2 r + c 2 r ∣ v 2 r ∣ ) [ r 1 2 θ 1 ˙ + 2 r 1 r ˙ 2 sin Δ + r 1 r 2 θ ˙ 2 cos Δ ] . = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) [ − r 1 r ˙ 1 cos θ 1 sin θ 1 + r 1 2 θ ˙ 1 sin 2 θ 1 + r 1 r ˙ 1 sin θ 1 cos θ 1 + r 1 2 θ ˙ 1 cos 2 θ 1 ] = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) [ r 1 r ˙ 1 ( − cos θ 1 sin θ 1 + sin θ 1 cos θ 1 ) + r 1 2 θ ˙ 1 ( sin 2 θ 1 + cos 2 θ 1 ) ] − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r 1 r ˙ 1 ( − cos θ 1 sin θ 1 + cos θ 1 sin θ 1 ) + r 1 2 θ 1 ˙ ( sin 2 θ 1 + cos 2 θ 1 ) Hence Equation (1 ) is
M 1 ( r 1 2 θ ¨ 1 + 2 r 1 r ˙ 1 θ ˙ 1 ) + μ 2 ( cos Δ ( 2 r 1 r ˙ 2 θ ˙ 2 + r 1 r 2 θ ¨ 2 ) + sin Δ ( r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 2 ) ) + μ 1 g r 1 cos θ 1 = Q θ 1 . \begin{aligned} M_1 (r_1^2 \ddot{\theta}_1 + 2r_1\dot{r}_1\dot{\theta}_1) + \mu_2(\cos{\Delta}(2r_1\dot{r}_2\dot{\theta}_2+r_1r_2\ddot{\theta}_2) +\sin{\Delta}(r_1\ddot{r}_2-r_1r_2\dot{\theta}_2^2)) + \mu_1 gr_1 \cos{\theta_1} &= Q_{\theta_1}. \end{aligned} M 1 ( r 1 2 θ ¨ 1 + 2 r 1 r ˙ 1 θ ˙ 1 ) + μ 2 ( cos Δ ( 2 r 1 r ˙ 2 θ ˙ 2 + r 1 r 2 θ ¨ 2 ) + sin Δ ( r 1 r ¨ 2 − r 1 r 2 θ ˙ 2 2 ) ) + μ 1 g r 1 cos θ 1 = Q θ 1 . Hence the corresponding line of our matrix equation is
[ 0 μ 2 r 1 sin Δ M 1 r 1 2 μ 2 r 1 r 2 cos Δ ] [ r ¨ 1 r ¨ 2 θ ¨ 1 θ ¨ 2 ] = [ − 2 M 1 r 1 r ˙ 1 θ ˙ 1 + μ 2 ( r 1 r 2 θ ˙ 2 2 sin Δ − 2 r 1 r ˙ 2 θ ˙ 2 cos Δ ) − μ 1 g r 1 cos θ 1 + Q θ 1 ] . \begin{aligned} \begin{bmatrix} 0 & \mu_2 r_1\sin{\Delta} & M_1r_1^2 & \mu_2 r_1r_2\cos{\Delta} \end{bmatrix} \begin{bmatrix} \ddot{r}_1 \\ \ddot{r}_2 \\ \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} &= \begin{bmatrix} -2M_1r_1\dot{r}_1 \dot{\theta}_1 + \mu_2(r_1r_2\dot{\theta}_2^2 \sin{\Delta} -2r_1\dot{r}_2 \dot{\theta}_2\cos{\Delta}) - \mu_1 gr_1\cos{\theta_1} + Q_{\theta_1} \end{bmatrix}. \end{aligned} [ 0 μ 2 r 1 sin Δ M 1 r 1 2 μ 2 r 1 r 2 cos Δ ] ⎣ ⎢ ⎢ ⎢ ⎡ r ¨ 1 r ¨ 2 θ ¨ 1 θ ¨ 2 ⎦ ⎥ ⎥ ⎥ ⎤ = [ − 2 M 1 r 1 r ˙ 1 θ ˙ 1 + μ 2 ( r 1 r 2 θ ˙ 2 2 sin Δ − 2 r 1 r ˙ 2 θ ˙ 2 cos Δ ) − μ 1 g r 1 cos θ 1 + Q θ 1 ] . As for θ 2 \theta_2 θ 2
δ θ 2 ′ L = M 1 2 δ θ 2 ′ ∣ v ⃗ 1 b ∣ 2 + M 2 2 δ θ 2 ′ ∣ v ⃗ 2 b I ∣ 2 + μ 2 2 ( δ θ 2 ′ ∣ Δ v ⃗ 2 , 1 I ∣ 2 + 2 g r 2 cos θ 2 ) = M 2 2 ( 2 r 2 2 θ ¨ 2 + 4 r 2 r ˙ 2 θ ˙ 2 ) + μ 2 2 ( 2 cos Δ ( 2 r ˙ 1 r 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) + 2 sin Δ ( r 1 r 2 θ ˙ 1 2 − r ¨ 1 r 2 ) + 2 g r 2 cos θ 2 ) = M 2 ( r 2 2 θ ¨ 2 + 2 r 2 r ˙ 2 θ ˙ 2 ) + μ 2 ( cos Δ ( 2 r ˙ 1 r 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) + sin Δ ( r 1 r 2 θ ˙ 1 2 − r ¨ 1 r 2 ) + g r 2 cos θ 2 ) . \begin{aligned} \delta'_{\theta_2} \mathcal{L} &= \dfrac{M_1}{2} \delta'_{\theta_2} |\vec{v}_{1b}|^2 + \dfrac{M_2}{2} \delta'_{\theta_2} |\vec{v}_{2b}^I|^2 + \dfrac{\mu_2}{2}(\delta'_{\theta_2} |\Delta \vec{v}_{2,1}^I|^2+2gr_2\cos{\theta_2}) \\ &= \dfrac{M_2}{2}(2r_2^2 \ddot{\theta}_2 + 4r_2 \dot{r}_2 \dot{\theta}_2) + \dfrac{\mu_2}{2}\left(2\cos{\Delta}(2\dot{r}_1r_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)+2\sin{\Delta}(r_1r_2\dot{\theta}_1^2-\ddot{r}_1r_2)+2gr_2\cos{\theta_2}\right) \\ &= M_2(r_2^2 \ddot{\theta}_2 + 2r_2 \dot{r}_2 \dot{\theta}_2) + \mu_2 (\cos{\Delta}(2\dot{r}_1r_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)+\sin{\Delta}(r_1r_2\dot{\theta}_1^2-\ddot{r}_1r_2)+gr_2\cos{\theta_2}). \end{aligned} δ θ 2 ′ L = 2 M 1 δ θ 2 ′ ∣ v 1 b ∣ 2 + 2 M 2 δ θ 2 ′ ∣ v 2 b I ∣ 2 + 2 μ 2 ( δ θ 2 ′ ∣ Δ v 2 , 1 I ∣ 2 + 2 g r 2 cos θ 2 ) = 2 M 2 ( 2 r 2 2 θ ¨ 2 + 4 r 2 r ˙ 2 θ ˙ 2 ) + 2 μ 2 ( 2 cos Δ ( 2 r ˙ 1 r 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) + 2 sin Δ ( r 1 r 2 θ ˙ 1 2 − r ¨ 1 r 2 ) + 2 g r 2 cos θ 2 ) = M 2 ( r 2 2 θ ¨ 2 + 2 r 2 r ˙ 2 θ ˙ 2 ) + μ 2 ( cos Δ ( 2 r ˙ 1 r 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) + sin Δ ( r 1 r 2 θ ˙ 1 2 − r ¨ 1 r 2 ) + g r 2 cos θ 2 ) . Q θ 2 = − ( b 1 b + c 1 b ∣ v ⃗ 1 b ∣ ) v ⃗ 1 b ⋅ ∂ r ⃗ 1 b ∂ θ 2 − ( b 1 r + c 1 r ∣ v ⃗ 1 r ∣ ) v ⃗ 1 r ⋅ ∂ r ⃗ 1 r ∂ θ 2 − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) v ⃗ 2 b ⋅ ∂ r ⃗ 2 b ∂ θ 2 − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) v ⃗ 2 r ⋅ ∂ r ⃗ 2 r ∂ θ 2 = − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ] ⋅ r 2 [ − sin θ 2 cos θ 2 ] − ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 2 ] ⋅ r 2 2 [ − sin θ 2 cos θ 2 ] = − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ − r ˙ 1 r 2 cos θ 1 sin θ 2 + r 1 r 2 θ ˙ 1 sin θ 1 sin θ 2 − r 2 r ˙ 2 cos θ 2 sin θ 2 + r 2 2 θ ˙ 2 sin 2 θ 2 + r ˙ 1 r 2 sin θ 1 cos θ 2 + r 1 r 2 θ ˙ 1 cos θ 1 cos θ 2 + r 2 r ˙ 2 sin θ 2 cos θ 2 + r 2 2 θ ˙ 2 cos 2 θ 2 ] − 1 2 ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ − r ˙ 1 r 2 cos θ 1 sin θ 2 + r 1 r 2 θ ˙ 1 sin θ 1 sin θ 2 − r 2 r ˙ 2 cos θ 2 sin θ 2 + r 2 2 θ ˙ 2 sin 2 θ 2 2 + r ˙ 1 r 2 sin θ 1 cos θ 2 + r 1 r 2 θ ˙ 1 cos θ 1 cos θ 2 + r 2 r ˙ 2 sin θ 2 cos θ 2 + r 2 2 θ ˙ 2 cos 2 θ 2 2 ] = − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r ˙ 1 r 2 ( − cos θ 1 sin θ 2 + sin θ 1 cos θ 2 ) + r 1 r 2 θ ˙ 1 ( sin θ 1 sin θ 2 + cos θ 1 cos θ 2 ) + r 2 r ˙ 2 ( − cos θ 2 sin θ 2 + sin θ 2 cos θ 2 ) + r 2 2 θ ˙ 2 ( sin 2 θ 2 + cos 2 θ 2 ) ] − 1 2 ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r ˙ 1 r 2 ( − cos θ 1 sin θ 2 + sin θ 1 cos θ 2 ) + r 1 r 2 θ ˙ 1 ( sin θ 1 sin θ 2 + cos θ 1 cos θ 2 ) + r 2 r ˙ 2 ( − cos θ 2 sin θ 2 + sin θ 2 cos θ 2 ) + r 2 2 θ ˙ 2 ( sin 2 θ 2 + cos 2 θ 2 ) 2 ] = − ( b 2 b + c 2 b ∣ v ⃗ 2 b ∣ ) [ r 2 2 θ ˙ 2 − r ˙ 1 r 2 sin Δ + r 1 r 2 θ ˙ 1 cos Δ ] − 1 2 ( b 2 r + c 2 r ∣ v ⃗ 2 r ∣ ) [ r 2 2 θ ˙ 2 2 − r ˙ 1 r 2 sin Δ + r 1 r 2 θ ˙ 1 cos Δ ] . \begin{aligned} Q_{\theta_2} &= -(b_{1b}+c_{1b}|\vec{v}_{1b}|)\vec{v}_{1b} \cdot \dfrac{\partial \vec{r}_{1b}}{\partial \theta_2}-(b_{1r}+c_{1r}|\vec{v}_{1r}|)\vec{v}_{1r} \cdot \dfrac{\partial \vec{r}_{1r}}{\partial \theta_2} - (b_{2b}+c_{2b}|\vec{v}_{2b}|)\vec{v}_{2b}\cdot \dfrac{\partial \vec{r}_{2b}}{\partial \theta_2} -(b_{2r}+c_{2r}|\vec{v}_{2r}|)\vec{v}_{2r}\cdot \dfrac{\partial \vec{r}_{2r}}{\partial \theta_2} \\ &= -(b_{2b}+c_{2b}|\vec{v}_{2b}|)\begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2} \end{bmatrix} \cdot r_2\begin{bmatrix} -\sin{\theta_2}\\ \cos{\theta_2} \end{bmatrix} -(b_{2r}+c_{2r}|\vec{v}_{2r}|)\begin{bmatrix} \dot{r}_1 \cos{\theta_1} - r_1 \dot{\theta}_1 \sin{\theta_1} + \dfrac{\dot{r}_2\cos{\theta_2} - r_2\dot{\theta}_2 \sin{\theta_2}}{2} \\ \dot{r}_1\sin{\theta_1} + r_1\dot{\theta}_1 \cos{\theta_1} + \dfrac{\dot{r}_2\sin{\theta_2} + r_2\dot{\theta}_2 \cos{\theta_2}}{2} \end{bmatrix} \cdot \dfrac{r_2}{2}\begin{bmatrix} -\sin{\theta_2}\\ \cos{\theta_2} \end{bmatrix} \\ &= -(b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[-\dot{r}_1r_2\cos{\theta}_1\sin{\theta_2} + r_1r_2\dot{\theta}_1\sin{\theta_1}\sin{\theta_2} - r_2\dot{r}_2\cos{\theta_2}\sin{\theta_2} + r_2^2\dot{\theta}_2\sin^2{\theta_2} + \dot{r}_1r_2\sin{\theta_1}\cos{\theta_2} + r_1r_2\dot{\theta}_1\cos{\theta_1}\cos{\theta_2} + r_2\dot{r}_2\sin{\theta_2}\cos{\theta_2} + r_2^2\dot{\theta}_2\cos^2{\theta_2}\right]\\ &-\dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[-\dot{r}_1r_2\cos{\theta}_1\sin{\theta_2} + r_1r_2\dot{\theta}_1\sin{\theta_1}\sin{\theta_2} - \dfrac{r_2\dot{r}_2\cos{\theta_2}\sin{\theta_2} + r_2^2\dot{\theta}_2\sin^2{\theta_2}}{2} + \dot{r}_1r_2\sin{\theta_1}\cos{\theta_2} + r_1r_2\dot{\theta}_1\cos{\theta_1}\cos{\theta_2} + \dfrac{r_2\dot{r}_2\sin{\theta_2}\cos{\theta_2} + r_2^2\dot{\theta}_2\cos^2{\theta_2}}{2}\right]\\ &= -(b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[\dot{r}_1r_2(-\cos{\theta}_1\sin{\theta_2} + \sin{\theta_1}\cos{\theta_2}) + r_1r_2\dot{\theta}_1(\sin{\theta_1}\sin{\theta_2}+\cos{\theta_1}\cos{\theta_2}) + r_2\dot{r}_2(-\cos{\theta_2}\sin{\theta_2} + \sin{\theta_2}\cos{\theta_2}) + r_2^2\dot{\theta}_2(\sin^2{\theta_2} +\cos^2{\theta_2})\right]\\ &-\dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dot{r}_1r_2(-\cos{\theta}_1\sin{\theta_2} + \sin{\theta_1}\cos{\theta_2}) + r_1r_2\dot{\theta}_1(\sin{\theta_1}\sin{\theta_2}+\cos{\theta_1}\cos{\theta_2}) + \dfrac{r_2\dot{r}_2(-\cos{\theta_2}\sin{\theta_2} + \sin{\theta_2}\cos{\theta_2}) + r_2^2\dot{\theta}_2(\sin^2{\theta_2} +\cos^2{\theta_2})}{2}\right]\\ &= -(b_{2b}+c_{2b}|\vec{v}_{2b}|)\left[ r_2^2\dot{\theta}_2-\dot{r}_1r_2\sin{\Delta} + r_1r_2\dot{\theta}_1\cos{\Delta}\right]-\dfrac{1}{2}(b_{2r}+c_{2r}|\vec{v}_{2r}|)\left[\dfrac{r_2^2\dot{\theta}_2}{2}-\dot{r}_1r_2\sin{\Delta} + r_1r_2\dot{\theta}_1\cos{\Delta}\right].\\ \end{aligned} Q θ 2 = − ( b 1 b + c 1 b ∣ v 1 b ∣ ) v 1 b ⋅ ∂ θ 2 ∂ r 1 b − ( b 1 r + c 1 r ∣ v 1 r ∣ ) v 1 r ⋅ ∂ θ 2 ∂ r 1 r − ( b 2 b + c 2 b ∣ v 2 b ∣ ) v 2 b ⋅ ∂ θ 2 ∂ r 2 b − ( b 2 r + c 2 r ∣ v 2 r ∣ ) v 2 r ⋅ ∂ θ 2 ∂ r 2 r = − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ] ⋅ r 2 [ − sin θ 2 cos θ 2 ] − ( b 2 r + c 2 r ∣ v 2 r ∣ ) ⎣ ⎢ ⎢ ⎡ r ˙ 1 cos θ 1 − r 1 θ ˙ 1 sin θ 1 + 2 r ˙ 2 cos θ 2 − r 2 θ ˙ 2 sin θ 2 r ˙ 1 sin θ 1 + r 1 θ ˙ 1 cos θ 1 + 2 r ˙ 2 sin θ 2 + r 2 θ ˙ 2 cos θ 2 ⎦ ⎥ ⎥ ⎤ ⋅ 2 r 2 [ − sin θ 2 cos θ 2 ] = − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ − r ˙ 1 r 2 cos θ 1 sin θ 2 + r 1 r 2 θ ˙ 1 sin θ 1 sin θ 2 − r 2 r ˙ 2 cos θ 2 sin θ 2 + r 2 2 θ ˙ 2 sin 2 θ 2 + r ˙ 1 r 2 sin θ 1 cos θ 2 + r 1 r 2 θ ˙ 1 cos θ 1 cos θ 2 + r 2 r ˙ 2 sin θ 2 cos θ 2 + r 2 2 θ ˙ 2 cos 2 θ 2 ] − 2 1 ( b 2 r + c 2 r ∣ v 2 r ∣ ) [ − r ˙ 1 r 2 cos θ 1 sin θ 2 + r 1 r 2 θ ˙ 1 sin θ 1 sin θ 2 − 2 r 2 r ˙ 2 cos θ 2 sin θ 2 + r 2 2 θ ˙ 2 sin 2 θ 2 + r ˙ 1 r 2 sin θ 1 cos θ 2 + r 1 r 2 θ ˙ 1 cos θ 1 cos θ 2 + 2 r 2 r ˙ 2 sin θ 2 cos θ 2 + r 2 2 θ ˙ 2 cos 2 θ 2 ] = − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r ˙ 1 r 2 ( − cos θ 1 sin θ 2 + sin θ 1 cos θ 2 ) + r 1 r 2 θ ˙ 1 ( sin θ 1 sin θ 2 + cos θ 1 cos θ 2 ) + r 2 r ˙ 2 ( − cos θ 2 sin θ 2 + sin θ 2 cos θ 2 ) + r 2 2 θ ˙ 2 ( sin 2 θ 2 + cos 2 θ 2 ) ] − 2 1 ( b 2 r + c 2 r ∣ v 2 r ∣ ) [ r ˙ 1 r 2 ( − cos θ 1 sin θ 2 + sin θ 1 cos θ 2 ) + r 1 r 2 θ ˙ 1 ( sin θ 1 sin θ 2 + cos θ 1 cos θ 2 ) + 2 r 2 r ˙ 2 ( − cos θ 2 sin θ 2 + sin θ 2 cos θ 2 ) + r 2 2 θ ˙ 2 ( sin 2 θ 2 + cos 2 θ 2 ) ] = − ( b 2 b + c 2 b ∣ v 2 b ∣ ) [ r 2 2 θ ˙ 2 − r ˙ 1 r 2 sin Δ + r 1 r 2 θ ˙ 1 cos Δ ] − 2 1 ( b 2 r + c 2 r ∣ v 2 r ∣ ) [ 2 r 2 2 θ ˙ 2 − r ˙ 1 r 2 sin Δ + r 1 r 2 θ ˙ 1 cos Δ ] . Hence Equation (1 ) for θ 2 \theta_2 θ 2 is
M 2 ( r 2 2 θ ¨ 2 + 2 r 2 r ˙ 2 θ ˙ 2 ) + μ 2 ( cos Δ ( 2 r ˙ 1 r 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) + sin Δ ( r 1 r 2 θ ˙ 1 2 − r ¨ 1 r 2 ) + g r 2 cos θ 2 ) = Q θ 2 . \begin{aligned} M_2(r_2^2 \ddot{\theta}_2 + 2r_2 \dot{r}_2 \dot{\theta}_2) + \mu_2 (\cos{\Delta}(2\dot{r}_1r_2\dot{\theta}_1+r_1r_2\ddot{\theta}_1)+\sin{\Delta}(r_1r_2\dot{\theta}_1^2-\ddot{r}_1r_2)+gr_2\cos{\theta_2}) &= Q_{\theta_2}. \end{aligned} M 2 ( r 2 2 θ ¨ 2 + 2 r 2 r ˙ 2 θ ˙ 2 ) + μ 2 ( cos Δ ( 2 r ˙ 1 r 2 θ ˙ 1 + r 1 r 2 θ ¨ 1 ) + sin Δ ( r 1 r 2 θ ˙ 1 2 − r ¨ 1 r 2 ) + g r 2 cos θ 2 ) = Q θ 2 . Or, in matrix form
[ − μ 2 r 2 sin Δ 0 μ 2 r 1 r 2 cos Δ M 2 r 2 2 ] [ r ¨ 1 r ¨ 2 θ ¨ 1 θ ¨ 2 ] = [ − 2 M 2 r 2 r ˙ 2 θ ˙ 2 − μ 2 ( 2 r ˙ 1 r 2 θ ˙ 1 cos Δ + r 1 r 2 θ ˙ 1 2 sin Δ + g r 2 cos θ 2 ) + Q θ 2 ] . \begin{aligned} \begin{bmatrix} -\mu_2r_2 \sin{\Delta} & 0 & \mu_2r_1 r_2\cos{\Delta} & M_2r_2^2 \end{bmatrix} \begin{bmatrix} \ddot{r}_1\\ \ddot{r}_2\\ \ddot{\theta}_1\\ \ddot{\theta}_2\\ \end{bmatrix} &= \begin{bmatrix} -2M_2 r_2\dot{r}_2 \dot{\theta}_2 - \mu_2(2\dot{r}_1r_2\dot{\theta}_1\cos{\Delta} + r_1r_2\dot{\theta}_1^2\sin{\Delta} + gr_2\cos{\theta_2}) + Q_{\theta_2} \end{bmatrix}. \end{aligned} [ − μ 2 r 2 sin Δ 0 μ 2 r 1 r 2 cos Δ M 2 r 2 2 ] ⎣ ⎢ ⎢ ⎢ ⎡ r ¨ 1 r ¨ 2 θ ¨ 1 θ ¨ 2 ⎦ ⎥ ⎥ ⎥ ⎤ = [ − 2 M 2 r 2 r ˙ 2 θ ˙ 2 − μ 2 ( 2 r ˙ 1 r 2 θ ˙ 1 cos Δ + r 1 r 2 θ ˙ 1 2 sin Δ + g r 2 cos θ 2 ) + Q θ 2 ] . [ M 1 μ 2 cos Δ 0 − μ 2 r 2 sin Δ μ 2 cos Δ M 2 μ 2 r 1 sin Δ 0 0 μ 2 r 1 sin Δ M 1 r 1 2 μ 2 r 1 r 2 cos Δ − μ 2 r 2 sin Δ 0 μ 2 r 1 r 2 cos Δ M 2 r 2 2 ] [ r ¨ 1 r ¨ 2 θ ¨ 1 θ ¨ 2 ] = [ M 1 r 1 θ ˙ 1 2 + μ 2 ( r 2 θ ˙ 2 2 cos Δ + 2 r ˙ 2 θ ˙ 2 sin Δ ) − μ 1 g sin θ 1 − k 1 ( r 1 − l 1 ) + Q r 1 M 2 r 2 θ ˙ 2 2 + μ 2 ( r 1 θ ˙ 1 2 cos Δ − 2 r ˙ 1 θ ˙ 1 sin Δ − g sin θ 2 ) − k 2 ( r 2 − l 2 ) + Q r 2 − 2 M 1 r 1 r ˙ 1 θ ˙ 1 + μ 2 ( r 1 r 2 θ ˙ 2 2 sin Δ − 2 r 1 r ˙ 2 θ ˙ 2 cos Δ ) − μ 1 g r 1 cos θ 1 + Q θ 1 − 2 M 2 r 2 r ˙ 2 θ ˙ 2 − μ 2 ( 2 r ˙ 1 r 2 θ ˙ 1 cos Δ + r 1 r 2 θ ˙ 1 2 sin Δ + g r 2 cos θ 2 ) + Q θ 2 ] \begin{aligned} \begin{bmatrix} M_1 & \mu_2 \cos{\Delta} & 0 & -\mu_2r_2 \sin{\Delta}\\ \mu_2 \cos{\Delta} & M_2 & \mu_2 r_1\sin{\Delta} & 0 \\ 0 & \mu_2 r_1\sin{\Delta} & M_1r_1^2 & \mu_2 r_1r_2\cos{\Delta}\\ -\mu_2r_2 \sin{\Delta} & 0 & \mu_2r_1 r_2\cos{\Delta} & M_2r_2^2 \end{bmatrix} \begin{bmatrix} \ddot{r}_1\\ \ddot{r}_2\\ \ddot{\theta}_1\\ \ddot{\theta}_2\\ \end{bmatrix} &= \begin{bmatrix} M_1r_1\dot{\theta}_1^2 + \mu_2 (r_2 \dot{\theta}_2^2\cos{\Delta} + 2 \dot{r}_2 \dot{\theta}_2\sin{\Delta}) - \mu_1g\sin{\theta_1} - k_1(r_1-l_1) + Q_{r_1} \\ M_2r_2\dot{\theta}_2^2 + \mu_2 (r_1\dot{\theta}_1^2\cos{\Delta}-2\dot{r}_1\dot{\theta}_1\sin{\Delta} - g\sin{\theta_2}) - k_2(r_2-l_2) + Q_{r_2}\\ -2M_1r_1\dot{r}_1 \dot{\theta}_1 + \mu_2(r_1r_2\dot{\theta}_2^2 \sin{\Delta} -2r_1\dot{r}_2 \dot{\theta}_2\cos{\Delta}) - \mu_1 gr_1\cos{\theta_1} + Q_{\theta_1} \\ -2M_2 r_2\dot{r}_2 \dot{\theta}_2 - \mu_2(2\dot{r}_1r_2\dot{\theta}_1\cos{\Delta} + r_1r_2\dot{\theta}_1^2\sin{\Delta} + gr_2\cos{\theta_2}) + Q_{\theta_2} \end{bmatrix} \end{aligned} ⎣ ⎢ ⎢ ⎢ ⎡ M 1 μ 2 cos Δ 0 − μ 2 r 2 sin Δ μ 2 cos Δ M 2 μ 2 r 1 sin Δ 0 0 μ 2 r 1 sin Δ M 1 r 1 2 μ 2 r 1 r 2 cos Δ − μ 2 r 2 sin Δ 0 μ 2 r 1 r 2 cos Δ M 2 r 2 2 ⎦ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎡ r ¨ 1 r ¨ 2 θ ¨ 1 θ ¨ 2 ⎦ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎡ M 1 r 1 θ ˙ 1 2 + μ 2 ( r 2 θ ˙ 2 2 cos Δ + 2 r ˙ 2 θ ˙ 2 sin Δ ) − μ 1 g sin θ 1 − k 1 ( r 1 − l 1 ) + Q r 1 M 2 r 2 θ ˙ 2 2 + μ 2 ( r 1 θ ˙ 1 2 cos Δ − 2 r ˙ 1 θ ˙ 1 sin Δ − g sin θ 2 ) − k 2 ( r 2 − l 2 ) + Q r 2 − 2 M 1 r 1 r ˙ 1 θ ˙ 1 + μ 2 ( r 1 r 2 θ ˙ 2 2 sin Δ − 2 r 1 r ˙ 2 θ ˙ 2 cos Δ ) − μ 1 g r 1 cos θ 1 + Q θ 1 − 2 M 2 r 2 r ˙ 2 θ ˙ 2 − μ 2 ( 2 r ˙ 1 r 2 θ ˙ 1 cos Δ + r 1 r 2 θ ˙ 1 2 sin Δ + g r 2 cos θ 2 ) + Q θ 2 ⎦ ⎥ ⎥ ⎥ ⎤