This webpage uses the Runge-Kutta-Fehlberg fourth-order method with fifth-order error checking (RKF45) to approximate the solution to the problem of the double elastic pendulum.
The equations that will be integrated here are derived in this article.
Figure 1: Diagram of the double elastic pendulum.
The ordinary differential equation system being solved is
⎣⎢⎢⎢⎡r¨1r¨2θ¨1θ¨2⎦⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎡1cosΔ0−r2sinΔm1+m2m2cosΔ1(m1+m2)r1m2sinΔ00r1sinΔ1r2r1cosΔ−m1+m2m2r2sinΔ0(m1+m2)r1m2r2cosΔ1⎦⎥⎥⎥⎥⎥⎥⎥⎥⎤−1⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡r1θ˙12−gsinθ1+m1+m2m2(r2θ˙22cosΔ+2r˙2θ˙2sinΔ)+m1+m2Qr1−k1(r1−l1)r2θ˙22−gsinθ2+r1θ˙12cosΔ−2r˙1θ˙1sinΔ+m2Qr2−k2(r2−l2)−r12r˙1θ˙1−r1gcosθ1−(m1+m2)r1m2[2r˙2θ˙2cosΔ−r2θ˙22sinΔ]+(m1+m2)r12Qθ1−r22r˙2θ˙2−r2gcosθ2−r22r˙1θ˙1cosΔ−r2r1θ˙12sinΔ+m2r22Qθ2⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤.